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Abstract. We present a compact high-order finite difference scheme for optioimg in the well-known Heston stochastic
volatility model. The scheme is fourth order accurate in space and secdadaccurate in time. This is also confirmed by
the numerical experiments that we present.
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INTRODUCTION

One widely used stochastic volatility model for option prigis Heston’s model [6]. It is based on a two-dimensional
stochastic diffusion process with two correlated Browmniastions. LetW = (W), W(2)) denote a two-dimensional
Brownian motion with correlatiomW® (t)dW(?)(t) = pdt on a given filtered probability space. The value of the
underlying asset in [6] follows

dS(t) = pS(t) dt+ /o (t)S(t) dwD t), do(t) = k*(8* — a(t))dt+vy/a(t) dW@(t), (1)

for 0 <t < T with §(0),0(0) > 0 wherep, k*, vand 6* denote the drift, the mean reversion speed, the volatifity o
volatility and the long-run mean af, respectively. Heston [6] shows that the option piNte- V (S, g,t) solves the
following partial differential equation

Wi + %szavser PVOS\ss + %VZO—VUQ' +rS\s+ [K*(G* —0)—A U]Vg -1V =0, (2)

forS o >0,0<t < T and subject to a suitable final condition, e\j.S o, T) = maxK — S 0), in case of a European
put option with strike pric&. In (2), A is a constant parameter for the market price of volatiligk riAs it is common
in the literature we introduce the modified parameters; k* + A, 8 = k*6*/(k* 4+ A), which allow us to study the
problem with one parameter less. The ‘boundary’ conditiarthe case of the put option read as follows

V(0,0,t)=Ke ™™ Y T>t>0 0>0, V(So,t)—»0, T>t>0,0>0,asS— ,
Vo(S0o,t)—0, T>t>0, S>0, aso — o, V(S o,t) -0, T>t>0,S>0,aso0—0.

For constantparameters, one can employ Fourier transform techniqusiatain a system of ordinary differential
equations which can be solved analytically [6]. In gendralyever, when the coefficients are not constant, equation
(2) has to be solved numerically. Another approach is tovdexpproximate analytic expressions, see, e.g., [1] and the
literature cited therein.

In the mathematical literature, there are many papers orericgat methods for option pricing, mostly addressing
the case of a single risk factor and using standard, secatet €inite difference methods (see, e.g., [13] and the
references therein). More recently, higher-order finifeedénce schemes (fourth-order in space) were proposed tha
use a compact stencil (three points in space). In the presenéxt see, e.g., [12] for linear and [4, 5, 10] for fully
nonlinear problems. There are less works considering necalenethods for option pricing in stochastic volatility
models, i.e., for two spatial dimensions. Finite differerapproaches that are used are often standard, low order



methods (second order in space) and little numerical aisadlysconvergence results are provided. Other approaches
include finite element-finite volume [15], multigrid [2], arse wavelet [9], and spectral methods [14].

Let us review some of the related finite difference literatifferent efficient methods for solving the American
option pricing problem for the Heston model are compared8in The article focusses on the treatment of the
early exercise free boundary and uses a second order fiffieeetlice discretization. In [7] different, low order ADI
(alternating direction implicit) schemes are adapted &éoHleston model to include the mixed spatial derivative term.
While most of [12] focusses on a compact high-order scheméhiistandard (one-dimensional) case, in a short
remark [12, Section 5] also the stochastic volatility (tdicaensional) case is considered. However, the final scheme
there is of second order only due to the low order approxiwnadf the cross diffusion term.

In this work we consider @ompact finite difference scherfar (two-dimensional) option pricing in the Heston
model. This compact scheme has been derived in [3]. It iglicander accurate in space and second order accurate in
time. Results on the unconditional stability in the senseosf Neumann and convergence of the scheme are given in
[3]. We present numerical experiments that confirm the googgrties of the method.

HIGH ORDER COMPACT SCHEME

Transformation of the equation

Under the transformation of variablgs= In(S/K),y= o /v, T =T —t, u= exp(rf)V /K, (we immediately drop the
tilde in the following) and using the modified paramete&rsnd 8, we obtain from (2),

1 1 6—v
U — Evy(uxx+ Uyy) — PVY Uy + (Evy— r)ux —K yUy =0, 3)
to be solved oiR x R™ with the following initial and boundary conditions:
u(x,0,0) = max1—expx),0), x€R, g>0,
ux,o,t) -1, x— —w, g>01t>0, u(x,o,t) -0, Xx— 4o, d>0,t>0,
Ugs(X,0,t) -0, XeR, 00—, t>0, Ugs(x,0,t) -0, xeR, 0—0,t>0.

Definition of the scheme

For the discretization, we repladeby [—R;, R;] andR™ by [0,R,] with Ry, R, > 0 . For simplicity, we consider a
uniform grid with mesh widtth in both thex- andy-direction,Z = {x; € [-Ry,Ry| : i =ih,i=—N,...,N} x {y; €
[O,Ry] 1 yj = jh,i=0,...,M} consisting of(2N + 1) x (M + 1) grid points, withR; = Nh, R, = Mh and time step
k. Let uj denote the approximate solution of (3) (,y;) at the timet, = nk and letu” = (ujj). On the truncated
numerical domain we impose artificial boundary conditidMe. impose Dirichlet conditions are on two boundaries,
ie., u’le =1 uQNj =0,(j=0,...,M), while we use homogeneous Neumann conditions at the otherdaries.

The fourth-order compact finite difference scheme derivegl@] uses a nine-point computational stencil involving
the eight nearest neighboring points of the reference guidtfi, j). Associated to the shape of the computational
stencil, we introduce indexes for each node from 0 to 9,

Ui—1,j+1=Us Ui,j+1 = U2 U1,j+1=Us
U-1,j = U3 Ui,j = Uo U+1,j =W
Ui—1,j-1=U7 Uj,j—1 =Us Ui+1,j—1 = Ug

The idea behind the derivation of the high-order compacesehis to operate on the differential equation as an
additional relation to obtain finite difference approximas for high-order derivatives in the truncation erroclision
of these expressions in a central difference method fortemué3) increases the order of accuracydoh®) while
retaining a compact stencil. Different time integratora b& implemented. We consider the most common class of
methods involving two times steps, differencing at tigpe= (1— p)t" + pt"1, where 0< p < 1 and the superscript
n denotes the time level. This yields a class of integrataas iticlude the forward Eulen(= 0), Crank-Nicolson
(u = 1/2) and backward Eulep(= 1) schemes. Details of the derivation and a thorough Foarialysis for the von
Neumann stability are presented in [3].



The resulting fully discrete difference scheme for néid¢) at the time leveh can be written in the form

liﬁ Uttt = li& u', (4)

where the coefficient§,, ¢, are given by

Bo=(((2y;2 — 8)V* + ((—8k — 8r)yj — 8pr)V° + (8k2y;% + 8r2)V?, — 16Kk 20vy; + 8k202) uk+ 16v%y;)h?
+ (—160% 4 40)y; 2V uk,
Brz =+ (KO —V* — KyjV*) Kk — (Y} + 20)V® + V21 )3 (((—yj2 + 2)V* + ((4r + 2K )yj + 4pr)V?
— (28 4 4r°)V?) uk+ 27y h? + (4v*y;2 + (—8y; Kk p — 8yir)V° + 8y K 6pV?) kh+ (8p% — B)y; vk,
Bo.a =+ ((2k%6v— 2kAPyj — 23K ) uk — 22y K + 2vk 8 — 2v3)h3 + (2% + 2kyj V8 + (—4K2y;% + 2k B)\V
+ 8Kk20vy; — 4k202) uk 4 2v3y; )h? + ((8y; %k + 8yjpr)V® — &y, %p — 8v2yk B) ukh+ (8p% — 8)y; VA ik,
Bs.7 =((V'p+ (=Y2K + KYjp +1)V° + (8 + 21K}V — 2rk V) ik + Vo py) )h? £ ((2p + 1)y; 2V + ((2+ 4p) Ky}
+ (—4pr — 2r)yj)V?+ (—26 — 40p)Ky;v?) ukh+ (—2 — 4p” — 6p)y; VA K,
Bos =((—Vp+ (yi?K — Kyjp — 1)V* + (=6 — 2r)Ky;V? + 2rk OV) ik — Vpyh? £ ((2p — 1)y;?V* + ((2— 4p)ky;?
+ (2r — 4pr)y; V3 + (48p — 20)ky;V?) ukh+ (—4p? + 6p — 2)y; 2k,

and

Jo =16y;h? + (1 — L)k(((8— 2y;%)V* + ((8K +8r)y; + 8pr V3 + (—8r2 — 8k 2y;?)V? + 16k 2Bvy; — 8k26%)h?
+(—40+160%)y;V*),
{13 == (2r — (yj +2p)V)V?h3 + 23yh2 4 (1 — p)K(Z(VKYj + V2 — KOWPh® + (VY% — (4r + 2K)vy; + 4r2 + 2k 8
— 2% — 4pVr)VPh? £ ((—4v+ 8K Pp)VPYj? + (—8K Bp + 8vr)V2y) )h+ (8v2 — 8VZp? VPy;?),
{oa =+ (2vk B — 2%yK — 2v*)h3 +- 2%y 0%+ (1 — )K(£2(V2 — KB + Ky ) KVE® + (4k 2VPy;% — (2V2 4 8K B)KVy;
+2k0(2k8 —V?) — 2% £ (8K + 4 p)y;2 + (8kOV? — 8v3pr)y) )h+ (—8v*p? + 8*)y;?),
{57 =Vpyjh? + (1 — K((VPyj2K — (VKB + 2rkv+ KV2p)yj — V(VPr — 2rk 8 +V3p))h?
+ (—V(2V3p + V2 + 4k V2P + 2V2K)y;2 + V(2vK B + 4vk Bp + 4 pr + 271 )y )h+ V(23 + 6v3p + 4v3p?)y;?),
los = —V2pyjh? + (1 — LK((—VPY;%K +V(VK O + 2rkv+ KV2p)y; +V(V2r — 2rk 6 +v*p))h?
+ (V(—2v3p + V3 + 4kV2p — 22Ky 4 V(2vk B — Avk Bp + 4v2pr — 2121 )y )h+ V(2 — 63p + 4v3p?)y;2).
When multiple indexes are used withand = signs, the first and second index corresponds to the uppdoeed

sign, respectively. Choosing = 1/2, i.e., in the Crank-Nicolson case, the resulting scheme mrdér two in time
and order four in space.

NUMERICAL RESULTS

In this section we perform a numerical study to compute tleoof convergence of the scheme. Due to the compact
discretization of (4) the resulting linear systems have edgeparsity pattern and can be solved very efficiently. We
use the parameteks= 100 T = 0.5, r =0.05, v=0.1, Kk =2, 8 = 0.01, p = —0.5. For the parameten we use a
Rannacher time-stepping choice [11], i.e., we start with fally implicit quarter time stepsy( = 1) and then continue
with Crank-Nicolson & = 1/2). We fix the parabolic mesh ratigh? to a constant value.

We compute thé, norm errore; and the maximum norm errag, of the numerical solution. Then, asymptotically,
we expect these errors to convergesas Ch™ for somem and C representing a constant. This impliegdh=
In(C) + min(h). Hence, the double-logarithmic pletagainsth should be asymptotic to a straight line with slape
This gives a method for experimentally determining the oodéhe scheme.



We refer to Figure 1 for the results using the parametersngal®ve. For comparison we conducted additional
experiments using a standard, second order scheme. Wevelikat the numerical convergence order agrees well
with the theoretical order of the schemes for carefully stihed initial condition. For non-smoaoth initial conditioimet
numerical convergence order of the high order compact sehsmeduced to about two. The error in the maximum
norm in this case, however, is still smaller by a factd 2 2 than the error for the standard scheme for comparable
numerical effort.
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FIGURE 1. Iy-error vs.h (left) andl.-error vs.h (right).
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