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Abstract. We present a compact high-order finite difference scheme for optionpricing in the well-known Heston stochastic
volatility model. The scheme is fourth order accurate in space and secondorder accurate in time. This is also confirmed by
the numerical experiments that we present.
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INTRODUCTION

One widely used stochastic volatility model for option pricing is Heston’s model [6]. It is based on a two-dimensional
stochastic diffusion process with two correlated Brownianmotions. LetW = (W(1),W(2)) denote a two-dimensional
Brownian motion with correlationdW(1)(t)dW(2)(t) = ρdt on a given filtered probability space. The value of the
underlying asset in [6] follows

dS(t) = µ̄S(t)dt+
√

σ(t)S(t)dW(1)(t), dσ(t) = κ∗(θ ∗−σ(t))dt+v
√

σ(t)dW(2)(t), (1)

for 0< t ≤ T with S(0),σ(0) > 0 whereµ̄, κ∗, v andθ ∗ denote the drift, the mean reversion speed, the volatility of
volatility and the long-run mean ofσ , respectively. Heston [6] shows that the option priceV = V(S,σ , t) solves the
following partial differential equation

Vt +
1
2

S2σVSS+ρvσSVSσ +
1
2

v2σVσσ + rSVS+
[

κ∗(θ ∗−σ)−λσ
]

Vσ − rV = 0, (2)

for S,σ > 0, 0≤ t < T and subject to a suitable final condition, e.g.,V(S,σ ,T) = max(K−S,0), in case of a European
put option with strike priceK. In (2), λ is a constant parameter for the market price of volatility risk. As it is common
in the literature we introduce the modified parameters,κ = κ∗+λ , θ = κ∗θ ∗/(κ∗+λ ), which allow us to study the
problem with one parameter less. The ‘boundary’ conditionsin the case of the put option read as follows

V(0,σ , t) = Ke−r(T−t), T > t ≥ 0, σ > 0, V(S,σ , t)→ 0, T > t ≥ 0, σ > 0, asS→ ∞,

Vσ (S,σ , t)→ 0, T > t ≥ 0, S> 0, asσ → ∞, Vσ (S,σ , t)→ 0, T > t ≥ 0, S> 0, asσ → 0.

For constantparameters, one can employ Fourier transform techniques and obtain a system of ordinary differential
equations which can be solved analytically [6]. In general,however, when the coefficients are not constant, equation
(2) has to be solved numerically. Another approach is to derive approximate analytic expressions, see, e.g., [1] and the
literature cited therein.

In the mathematical literature, there are many papers on numerical methods for option pricing, mostly addressing
the case of a single risk factor and using standard, second order finite difference methods (see, e.g., [13] and the
references therein). More recently, higher-order finite difference schemes (fourth-order in space) were proposed that
use a compact stencil (three points in space). In the presentcontext see, e.g., [12] for linear and [4, 5, 10] for fully
nonlinear problems. There are less works considering numerical methods for option pricing in stochastic volatility
models, i.e., for two spatial dimensions. Finite difference approaches that are used are often standard, low order



methods (second order in space) and little numerical analysis or convergence results are provided. Other approaches
include finite element-finite volume [15], multigrid [2], sparse wavelet [9], and spectral methods [14].

Let us review some of the related finite difference literature. Different efficient methods for solving the American
option pricing problem for the Heston model are compared in [8]. The article focusses on the treatment of the
early exercise free boundary and uses a second order finite difference discretization. In [7] different, low order ADI
(alternating direction implicit) schemes are adapted to the Heston model to include the mixed spatial derivative term.
While most of [12] focusses on a compact high-order scheme forthe standard (one-dimensional) case, in a short
remark [12, Section 5] also the stochastic volatility (two-dimensional) case is considered. However, the final scheme
there is of second order only due to the low order approximation of the cross diffusion term.

In this work we consider acompact finite difference schemefor (two-dimensional) option pricing in the Heston
model. This compact scheme has been derived in [3]. It is fourth order accurate in space and second order accurate in
time. Results on the unconditional stability in the sense ofvon Neumann and convergence of the scheme are given in
[3]. We present numerical experiments that confirm the good properties of the method.

HIGH ORDER COMPACT SCHEME

Transformation of the equation

Under the transformation of variablesx= ln(S/K), y= σ/v, t̃ = T − t, u= exp(rt̃)V/K, (we immediately drop the
tilde in the following) and using the modified parameters,κ andθ , we obtain from (2),

ut −
1
2

vy(uxx+uyy)−ρvyuxy+
(1

2
vy− r

)

ux−κ
θ −vy

v
uy = 0, (3)

to be solved onR×R
+ with the following initial and boundary conditions:

u(x,σ ,0) = max(1−exp(x),0), x∈ R, σ > 0,

u(x,σ , t)→ 1, x→−∞, σ > 0, t > 0, u(x,σ , t)→ 0, x→+∞, σ > 0, t > 0,

uσ (x,σ , t)→ 0, x∈ R, σ → ∞, t > 0, uσ (x,σ , t)→ 0, x∈ R, σ → 0, t > 0.

Definition of the scheme

For the discretization, we replaceR by [−R1,R1] andR+ by [0,R2] with R1,R2 > 0 . For simplicity, we consider a
uniform grid with mesh widthh in both thex- andy-direction,Z = {xi ∈ [−R1,R1] : xi = ih, i = −N, ...,N}×{y j ∈
[0,R2] : y j = jh, i = 0, ...,M} consisting of(2N+ 1)× (M + 1) grid points, withR1 = Nh, R2 = Mh and time step
k. Let un

i j denote the approximate solution of (3) in(xi ,y j) at the timetn = nk and letun = (un
i j ). On the truncated

numerical domain we impose artificial boundary conditions.We impose Dirichlet conditions are on two boundaries,
i.e.,un

−N j = 1, un
+N j = 0, ( j = 0, . . . ,M), while we use homogeneous Neumann conditions at the other boundaries.

The fourth-order compact finite difference scheme derived in [3] uses a nine-point computational stencil involving
the eight nearest neighboring points of the reference grid point (i, j). Associated to the shape of the computational
stencil, we introduce indexes for each node from 0 to 9,





ui−1, j+1 = u6
ui−1, j = u3

ui−1, j−1 = u7

ui, j+1 = u2
ui, j = u0

ui, j−1 = u4

ui+1, j+1 = u5
ui+1, j = u1

ui+1, j−1 = u8



 .

The idea behind the derivation of the high-order compact scheme is to operate on the differential equation as an
additional relation to obtain finite difference approximations for high-order derivatives in the truncation error. Inclusion
of these expressions in a central difference method for equation (3) increases the order of accuracy toO(h4) while
retaining a compact stencil. Different time integrators can be implemented. We consider the most common class of
methods involving two times steps, differencing at timetµ = (1−µ)tn+µtn+1, where 0≤ µ ≤ 1 and the superscript
n denotes the time level. This yields a class of integrators that include the forward Euler (µ = 0), Crank-Nicolson
(µ = 1/2) and backward Euler (µ = 1) schemes. Details of the derivation and a thorough Fourieranalysis for the von
Neumann stability are presented in [3].



The resulting fully discrete difference scheme for node(i, j) at the time leveln can be written in the form

8

∑
l=0

βl u
n+1
l =

8

∑
l=0

ζl u
n
l , (4)

where the coefficientsβl , ζl are given by

β0 =(((2y j
2−8)v4+((−8κ −8r)y j −8ρr)v3+(8κ2y j

2+8r2)v2,−16κ2θvyj +8κ2θ 2)µk+16v3y j)h
2

+(−16ρ2+40)y j
2v4µk,

β1,3 =± ((κθv2−v4−κy jv
3)µk− (y j +2ρ)v3+2v2r)h3+(((−y j

2+2)v4+((4r +2κ)y j +4ρr)v3

− (2κθ +4r2)v2)µk+2v3y j)h
2± (4v4y j

2+(−8y j
2κρ −8y j r)v

3+8y jκθρv2)µkh+(8ρ2−8)y j
2v4µk,

β2,4 =± ((2κ2θv−2κ2v2y j −2v3κ)µk−2v2y jκ +2vκθ −2v3)h3+((2v4+2κy jv
3+(−4κ2y j

2+2κθ)v2

+8κ2θvyj −4κ2θ 2)µk+2v3y j)h
2± ((8y j

2κ +8y jρr)v3−4v4y j
2ρ −8v2y jκθ)µkh+(8ρ2−8)y j

2v4µk,

β5,7 =((v4ρ +(−y2κ +κy jρ + r)v3+(θ +2r)κy jv
2−2rκθv)µk+v3ρy j)h

2± ((2ρ +1)y j
2v4+((2+4ρ)κy j

2

+(−4ρr −2r)y j)v
3+(−2θ −4θρ)κy jv

2)µkh+(−2−4ρ2−6ρ)y j
2v4µk,

β6,8 =((−v4ρ +(y j
2κ −κy jρ − r)v3+(−θ −2r)κy jv

2+2rκθv)µk−v3ρy j)h
2± ((2ρ −1)y j

2v4+((2−4ρ)κy j
2

+(2r −4ρr)y j)v
3+(4θρ −2θ)κy jv

2)µkh+(−4ρ2+6ρ −2)y j
2v4µk,

and

ζ0 =16v3y jh
2+(1−µ)k(((8−2y j

2)v4+((8κ +8r)y j +8ρr)v3+(−8r2−8κ2y j
2)v2+16κ2θvyj −8κ2θ 2)h2

+(−40+16ρ2)y j
2v4),

ζ1,3 =± (2r − (y j +2ρ)v)v2h3+2v3y jh
2+(1−µ)k(±(vκy j +v2−κθ)v2h3+(v2y j

2− (4r +2κ)vyj +4r2+2κθ

−2v2−4ρvr)v2h2± ((−4v+8κρ)v3y j
2+(−8κθρ +8vr)v2y j)h+(8v2−8v2ρ2)v2y j

2),

ζ2,4 =± (2vκθ −2v2y jκ −2v3)h3+2v3y jh
2+(1−µ)k(±2(v2−κθ +κvyj)κvh3+(4κ2v2y j

2− (2v2+8κθ)κvyj

+2κθ(2κθ −v2)−2v4)h2± ((−8v3κ +4v4ρ)y j
2+(8κθv2−8v3ρr)y j)h+(−8v4ρ2+8v4)y j

2),

ζ5,7 =v3ρy jh
2+(1−µ)k((v3y j

2κ −v(vκθ +2rκv+κv2ρ)y j −v(v2r −2rκθ +v3ρ))h2

± (−v(2v3ρ +v3+4κv2ρ +2v2κ)y j
2+v(2vκθ +4vκθρ +4v2ρr +2v2r)y j)h+v(2v3+6v3ρ +4v3ρ2)y j

2),

ζ6,8 =−v3ρy jh
2+(1−µ)k((−v3y j

2κ +v(vκθ +2rκv+κv2ρ)y j +v(v2r −2rκθ +v3ρ))h2

± (v(−2v3ρ +v3+4κv2ρ −2v2κ)y j
2+v(2vκθ −4vκθρ +4v2ρr −2v2r)y j)h+v(2v3−6v3ρ +4v3ρ2)y j

2).

When multiple indexes are used with± and∓ signs, the first and second index corresponds to the upper andlower
sign, respectively. Choosingµ = 1/2, i.e., in the Crank-Nicolson case, the resulting scheme is oforder two in time
and order four in space.

NUMERICAL RESULTS

In this section we perform a numerical study to compute the order of convergence of the scheme. Due to the compact
discretization of (4) the resulting linear systems have a good sparsity pattern and can be solved very efficiently. We
use the parametersK = 100, T = 0.5, r = 0.05, v= 0.1, κ = 2, θ = 0.01, ρ = −0.5. For the parameterµ we use a
Rannacher time-stepping choice [11], i.e., we start with four fully implicit quarter time steps (µ = 1) and then continue
with Crank-Nicolson (µ = 1/2). We fix the parabolic mesh ratiok/h2 to a constant value.

We compute thel2 norm errorε2 and the maximum norm errorε∞ of the numerical solution. Then, asymptotically,
we expect these errors to converge asε = Chm for somem andC representing a constant. This implies ln(ε) =
ln(C)+mln(h). Hence, the double-logarithmic plotε againsth should be asymptotic to a straight line with slopem.
This gives a method for experimentally determining the order of the scheme.



We refer to Figure 1 for the results using the parameters given above. For comparison we conducted additional
experiments using a standard, second order scheme. We observe that the numerical convergence order agrees well
with the theoretical order of the schemes for carefully smoothed initial condition. For non-smooth initial condition the
numerical convergence order of the high order compact scheme is reduced to about two. The error in the maximum
norm in this case, however, is still smaller by a factor 1.5−2 than the error for the standard scheme for comparable
numerical effort.
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FIGURE 1. l2-error vs.h (left) andl∞-error vs.h (right).
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