
November 23, 2007 14:26 WSPC - Proceedings Trim Size: 9in x 6in proceed

1

EXPONENTIAL AND ALGEBRAIC RELAXATION

IN KINETIC MODELS FOR WEALTH DISTRIBUTION

B. DÜRING
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Two classes of kinetic models for wealth distribution in simple market
economies are compared in view of their speed of relaxation towards station-
arity in a Wasserstein metric. We prove fast (exponential) convergence for a
model with risky investments introduced by Cordier, Pareschi and Toscani,7

and slow (algebraic) convergence for the model with quenched saving propen-

sities of Chakrabarti, Chatterjee and Manna.3 Numerical experiments confirm
the analytic results.
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1. Kinetic Models in Econophysics

One of the founding ideas in the rapidly growing field of econophysics is

that the laws of statistical mechanics for particle systems also govern the

trade interactions between agents in a simple market. Just as a classical ki-

netic model is defined by prescribing the collision kernel for the microscopic

particle interactions, the econophysical model is defined by prescribing the

exchange rules for wealth in trades. In dependence on these “microscopic”

rules, the system develops “macroscopic” features in the long-time limit.

Such macroscopic correlations are visible for instance in the form of a non-

trivial stationary wealth distribution curve.

Many different (and somewhat justifiable) approaches to create a good

model exist. Nevertheless, up to now little is known about which factors

should enter into the exchange rules (in order to make the model realistic),

and which should not (in order to keep it simple). Typically, the value of
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a model is estimated a posteriori by comparing its predictions with real-

world data. For instance, it is widely accepted that the stationary wealth

distribution f∞(v) (denoting the density of agents with wealth v > 0)

should possess a Pareto tail,

F∞(v) =

∫ ∞

v

f∞(w) dw ∝ v−α. (1)

The exponent α is referred to as Pareto index, named after the economist

Vilfredo Pareto,13 who proposed formula (1) more than a hundred years

ago. According to recent empirical data, the wealth distribution among the

population in a western country follows the Pareto law, with an index α

ranging between 1.5 and 2.5. We refer e.g. to Ref. 1 and the references

therein.

Below, we compare two types of econophysical models, which are able

to produce Pareto tails.

1.1. The Cordier-Pareschi-Toscani model

The Cordier-Pareschi-Toscani model (CPT model) has been introduced in

Ref. 7, and was intensively studied only recently.10 When two agents with

pre-trade wealths v and w interact, then their post-trade wealth v∗ and w∗,

respectively, is given by

v∗ = (λ + η1)v + (1 − λ)w, w∗ = (1 − λ)v + (λ + η2)w. (2)

Here λ ∈ (0, 1) is the saving propensity, which models the fact that agents

never exchange their entire wealth in a trade, but always retain a certain

fraction λ of it. The quantities η1 and η2 are random variables with mean

zero, satisfying ηi ≥ −λ. They model risky investments that each agent

performs in addition to trading. A crucial feature of the CPT model is that

it preserves the total wealth in the statistical mean,
〈
v∗ + w∗

〉
=

(
1 + 〈η1〉

)
v +

(
1 + 〈η1〉

)
w = v + w, (3)

where 〈·〉 denotes the statistical expectation value. The behavior of the

homogeneous Boltzmann equation corresponding to (3) is to a large extend

determined10 by the convex function

S(s) := (1 − λ)s − 1 +
1

2

〈
(λ + η1)

s + (λ + η2)
s
〉
. (4)

Clearly, S(1) = 0 by (3). Provided S
′(0) < 0, the model possesses a unique

steady state f∞. If S(s) < 0 for all s > 1, then f∞ has an exponentially
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small tail. On the contrary, if there exits a non-trivial root s̄ ∈ (1,∞) of

S, then f∞ possesses a Pareto tail (1) of index α = s̄.

Theorem 2.1 below states that (in both cases) any solution f(t) con-

verges to f∞ exponentially fast in suitable Fourier and Wasserstein metrics.

1.2. The Chakrabarti-Chatterjee-Manna model

The Chakrabarti-Chatterjee-Manna model (CCM model) was introduced

in Ref. 3, and heavily investigated in the last decade. While the saving

propensity λ is a global quantity in the CPT model, in the CCM model it

is a characteristics of the individual agents. The “state” of an agent is now

described by his wealth and his personal saving propensity. The latter does

not change with time. In a trade between two agents with wealth v, w and

saving propensities λ, µ, respectively, wealth is exchanged according to

v∗ = λv + ǫ∆, w∗ = µw + (1 − ǫ)∆ with ∆ = (1 − λ)v + (1 − µ)w.

(5)

Here ǫ is a random variable in (0, 1). The key ingredient for this model is the

(time-independent) density g(λ) of saving propensities among the agents.

The homogeneous Boltzmann equation associated to the rules (5) has been

heavily investigated numerically in terms of Monte Carlo simulations;2–6

we present further simulation results here. Also, some theoretical investi-

gations exist.6,11,14 At least in the deterministic case ǫ ≡ 1/2, the wealth

distribution of the steady state is explicitly known,12

f∞(w) =
C

w2
g
(
1 −

C

w

)
. (6)

In the non-deterministic case, the choice of the random quantity ǫ has seem-

ingly little influence2 on the shape of f∞. Thus, by prescribing g suitably,

cf. section 3, steady states with a Pareto tail of arbitrary index α can be

generated. Furthermore, we prove below (see Theorem 2.2) that for the

majority of initial conditions the Wasserstein distance between the solution

and the corresponding steady state with a Pareto tail can at best decay al-

gebraically in time. For the proof, we shall need no properties of the CCM

model other than the pointwise conservation of wealth,

v∗ + w∗ = v + w, (7)

which is much stricter than conservation in the mean (3). The argument

is based on the result from Ref. 10, that in pointwise conservative models

initially finite moments of the solution diverge at most at algebraic rate.
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1.3. Other approaches

Many econophysical models for wealth distribution — including the ones

mentioned above — are still very basic as the agents just trade randomly

with each other, do not adapt their saving strategy, and so on. Slightly more

realistic economic models have been proposed, which admit the agents to

have a little bit of intelligence, or at least trading preferences, see e.g. the

collected works in Ref. 5 for an overview on recent developments. Finally,

we mention that one may consider mean-field equations or hydrodynamic

limits9 instead of the full kinetic model.

2. Analytical Estimation of Convergence Rates

2.1. Preliminaries

We consider weak solutions f to the homogeneous Boltzmann equation,

d

dt

∫ ∞

0

Φ(v)df(v)

=
1

2

〈∫ ∞

0

∫ ∞

0

(
Φ(v∗) + Φ(w∗) − Φ(v) − Φ(w)

)
df(v)df(w)

〉
, (8)

where Φ is a regular test function, v, w denote the pre-collisional, and v∗, w∗

the post-collisional wealths, according to the rules (2) and (5), respectively.

Further, we assume that f is a probability density with mean wealth equal

to one. (Notice that both models preserve mass and mean wealth.) In order

to measure the convergence to equilibrium, f(t, v) → f∞(v) for t → ∞, we

introduce the following distances.

Definition 2.1. Let two probability densities f and g on R+ be given,

both with first moment equal to one, and finite moments of some order

s̄ ∈ (1, 2].

• For s ∈ [1, s̄], the Fourier distance ds is defined by

ds(f, g) := sup
ξ∈R\{0}

(
|ξ|−s

∣∣f̂(ξ) − ĝ(ξ)
∣∣), (9)

where f̂ and ĝ denote the Fourier transforms of f and g.

• The Wasserstein-one-distance is defined by

W (f, g) :=

∫

R+

∣∣F (v) − G(v)
∣∣ dv, (10)

where F and G denote the distribution functions of f and g,

F (v) =

∫ ∞

v

f(w) dw, G(v) =

∫ ∞

v

g(w) dw.
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Equivalently, the Wasserstein distance between f and g can be defined as

the infimum of the costs for transportation,

W (f, g) := inf
π∈Π

∫

R+×R+

|v − w| dπ(v, w). (11)

Here Π is the collection of all probability measures on R+ × R+ with

marginals f(x) dx and g(x) dx, respectively. The infimum in (11) is in fact a

minimum, and is realized by some optimal transport plan πopt. For details,

see Ref. 8 and references therein.

2.2. Exponential convergence for the CPT model

Theorem 2.1. Assume η1 and η2 in the CPT model (2) are such that

S
′(1) < 0 with S defined in (4). Then there exists a unique steady state

f∞ for (8), which is of mean wealth one. Further, there is some s̄ ∈ (1, 2]

for which λ := S(s̄) < 0, and any solution f(t) to (8) — with initially

bounded s̄th moment — is exponentially attracted by f∞:

ds̄

(
f(t), f∞

)
≤ ds̄

(
f(0), f∞

)
exp(λt), (12)

W
(
f(t), f∞

)
≤ C exp

(
(s̄ − 1)λ

s̄(2s̄ − 1)
t

)
, (13)

with some finite, time-independent constant C > 0.

Estimate (12) is a consequence of Theorem 3.3 in Ref. 10. Estimate (13) is

new, and follows from (12) and estimate (14) below. We remark that (12)

is relatively easy to obtain, working on the Fourier representation of the

Boltzmann equation (8), and using the homogeneity properties of ds. On

the contrary, a direct proof of (13) seems difficult. Notice that we cannot

resort to the more convenient Wasserstein-two-metric here since the second

moment of f∞ might be infinite.

Lemma 2.1. Assume that two probability densities f and g have first mo-

ment equal to one, and some moment of order s ∈ (1, 2] bounded. Then

there exists a constant C > 0, depending only on s and the values of the

sth moments of f and g, such that

W (f, g) ≤ Cds(f, g)
s−1

s(2s−1) . (14)

Conversely, one has

d1(f, g) ≤ W (f, g), (15)

even if no moments of f and g above the first are bounded.
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Proof. To prove (14), we extend the proof of Theorem 2.21 in Ref. 8,

corresponding to s = 2 in the theorem above. Define

M = max

{∫

R

|v|sf(v) dv,

∫

R

|v|sg(v) dv

}
.

Starting from the definition of the Wasserstein distance in (10), we estimate

W (f, g) =

∫

R+

∣∣F (v) − G(v)
∣∣ dv

≤

∫ R

0

∣∣F (v) − G(v)
∣∣ dv + R1−s

∫ ∞

R

vs−1
∣∣F (v) − G(v)

∣∣ dv (16)

≤ R1/2

( ∫

R+

∣∣F (v) − G(v)
∣∣2 dv

)1/2

+ R1−s

∫ ∞

R

vs−1
∣∣F (v) − G(v)

∣∣ dv,

where the parameter R = R(t) > 0 is specified later. By Parseval’s identity,
∫

R+

∣∣(F − G
)
(v)

∣∣2 dv =

∫

R

∣∣ ̂(F − G)(ξ)
∣∣2 dξ

=

∫

R

∣∣(iξ)−1
(
f̂(ξ) − ĝ(ξ)

)∣∣2 dx ≤ ds(f, g)2
∫

|ξ|<r

|ξ|2(s−1) dξ + 4

∫

|ξ|≥r

ξ−2 dξ

= (2s − 1)−1r2s−1ds(f, g)2 + 8r−1 ≤ C1ds(f, g)1/s.

The last estimate follows by optimizing in the previous line with respect

to r > 0. The constant C1 depends only on s > 1. This gives a bound on

the first term in (16) above. We estimate the second term, integrating by

parts:
∫ ∞

R

vs−1
∣∣F (v) − G(v)

∣∣ dv ≤

∫ ∞

R

vs−1
(
F (v) + G(v)

)
dv

=
1

s

∫ ∞

R

vs
(
f(v) + g(v)

)
dv +

(
vs

(
F (v) + G(v)

))∣∣∣
∞

R

≤
2M

s
+ lim

r→+∞

(
rs

(
F (r) + G(r)

))
.

The last expression is easily estimated by Chebyshev’s inequality, i.e.,

lim
r→∞

(
rsF (r)

)
≤ lim

r→∞

(
rs Pf

[
v > r

])
≤ lim

r→∞

∫ ∞

r

vsf(v) dv = 0,

since the sth moment of f is finite. In summary, (16) yields

W (f, g) ≤ C
1/2
1 R1/2ds(f, g)1/(2s) + 2s−1MR1−s.

Optimizing this over R yields the desired inequality (14).
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The other inequality (15) is derived from the alternative definition (11)

of W (f, g). With πopt being the optimal transport in (11),

d1(f, g) = sup
ξ 6=0

(
|ξ|−1

∣∣∣
∫

R+

e−ivξf(v) dv −

∫

R+

e−iwξg(w) dw
∣∣∣
)

≤ sup
ξ 6=0

(
|ξ|−1

∫

R+

∣∣e−ivξ − e−iwξ
∣∣ dπopt(v, w)

)

≤

∫

R+

sup
ξ 6=0

( |1 − ei(v−w)ξ|

|v − w||ξ|

)
|v − w| dπopt(v, w) = sup

x∈R

( |1 − eix|

|x|

)
W (f, g).

In view of the elementary inequality |1 − exp(ix)| ≤ |x| for x ∈ R, this

yields the claim (15).

2.3. Algebraic convergence for the CCM model

Theorem 2.2. Assume the steady state f∞ for the CCM model possesses a

Pareto tail of index α > 1. Let f(t) be a solution of the associated Boltzmann

equation (8), whose initial condition f(0) has a finite moment of some order

n > α. Then

W
(
f(t), f∞

)
≥ ct−

n(α−1)
n−α (17)

with some time-independent constant c > 0.

Proof. By definition of the Pareto tail (1), one has F∞(v) ≥ 2εv−α for

v ≫ 0 with some ε > 0. On the other hand, Theorem 3.2 in Ref. 10 (we

refer also to the discussion of Example 8 in section 4.2 in Ref. 10) yields

that the n-th moment Mn(t) of f(t) satisfies Mn(t) ≤ Ctn for t ≫ 0 with

a finite constant C > 0. Consequently,

F (t; v) =

∫ ∞

v

f(t; w) dw ≤ v−n

∫ ∞

0

wnf(t; w) dw ≤ Cv−ntn.

Hence F∞(v) − F (t; v) ≥ εv−α for all v ≥ V (t) := (Ctn/ε)1/(n−α). By

definition of the Wasserstein distance,

W
(
f(t), f∞

)
≥ ε

∫ ∞

V (t)

v−αdv ≥ c · t−
n(α−1)

n−α ,

where c > 0 depends on ε, n, α and C, but not on t.
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3. Numerical Experiments

In order to verify the analytically estimated bounds on the relaxation be-

havior, we have performed a series of kinetic Monte Carlo simulations for

both the CPT and the CCM models. We compare numerical results for sys-

tems consisting of N = 200, N = 1000 and N = 5000 agents, respectively.

In these rather basic simulations, pairs of agents are randomly selected for

binary collisions, and exchange wealth according to the trade rules (2) and

(5), respectively. One time step corresponds to N such interactions.

As parameters for the CPT model, we have chosen a saving propensity of

λ ≡ 0.7 and independent random variables η1, η2 attaining the values ±0.5

with probability 1/2 each. The non-trivial root of S(s) in (4) is s̄ ≈ 3.7.

In the CCM model, we assign the saving propensities by means of λ =

(1 − ω)2.5, with ω ∈ (0, 1) being a uniformly distributed random variable.

We restricted simulations to the deterministic situation ǫ ≡ 1/2. In all our

experiments, every agent possesses unit wealth initially.

In order to compute a good approximation of the steady state, the

simulation is carried out for about 105 time steps, and then the wealth

distribution is averaged over another 104 time steps. The thus obtained

reference state is used in place of the (unknown) steady wealth distribution

when calculating the decay of the Wasserstein distance in Fig. 1 and Fig.

2, respectively. The evolution of the wealth distributions over time for N =

1000 agents is illustrated in Fig. 3 and Fig. 4. The agents are sorted by

wealth, and the wealth distribution at different time steps is compared to

the approximate steady state.

Some words are in order to explain the results. The first remark concerns

the seemingly poor approximation of the steady state in the CPT model,

with a residual Wasserstein distance of the order 10−1 . . . 10−2. The reason

for this behavior lies in the essentially statistical nature of this model,

which never reaches equilibrium in finite-size systems, due to persistent

thermal fluctuations. Strictly speaking, a comparision with the CMM model

is misleading here, since simulations for the latter are performed in the

purely deterministic setting ǫ ≡ 1/2. Second, the almost perfect exponential

(instead of algebraic) decay displayed in Fig. 2 is due to finite-size effects of

the system. The decrease of the exponential rates when the system size N

increases strongly indicates that in the theoretical limit N → ∞ relaxation

is indeed sub-exponential as expected. We stress that — in contrast — the

decay rate in Fig. 1 for the CPT model is independent of the system size.
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Fig. 1. Decay of the Wasserstein distance to the steady state in the CPT model.
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Fig. 2. Decay of the Wasserstein distance to the steady state in the CCM model.
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Fig. 3. Evolution of the wealth distribution towards the steady state for the upper half
of the population in the CPT model (N = 1000).
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Fig. 4. Evolution of the wealth distribution towards the steady state for the upper tenth
part of the population in the CCM model (N = 1000).


