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Abstract. In this paper analytical solutions for European option prices are derived for a class of rather
general asset specific pricing kernels (ASPKs) and distributions of the underlying asset. Special cases
include underlying assets that are lognormally or log-gamma distributed at expiratiol d@teese

special cases are generalizations of the Black and Scholes (1973) option pricing formula and the Heston
(1993) option pricing formula for non-constant elasticity of the ASPK. Analytical solutions for a normally
distributed and a uniformly distributed underlying are also derived for the class of general ASPKs. The
shape of the implied volatility is analyzed to provide further understanding of the relationship between the
shape of the ASPK, the underlying subjective distribution and option prices. The properties of this class
of ASPKs are also compared to approaches used in previous empirical studies.
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Introduction

Independently of the approach chosen to price options, as with any pricing problem,
option prices are completely determined by the distribution of the value of the under-
lying asset at expiration and the shape of the asset specific pricing kernel (ASPK).
Mathematically, the pricing kernel characterizes the change from the subjective prob-
ability measureP to the risk-neutral (or equivalent martingale) meadQrat is also
known as the Radon-Nikodym derivative §f with respect toP. In the case of
Black and Scholes (1973) it is assumed that the underlying asset is governed by a
geometric Brownian motion and that continuous and frictionless trading is possible.
For the Black and Scholes model, both the distribution at expiration and the ASPK
are uniquely determined by the geometric Brownian motion. Rubinstein (1976) and
Brennan (1979) make explicit assumptions on the distribution and the ASPK. More
precisely, they assume a representative investor and thus the representative investor’s
utility function characterizes the ASPKa@ara (2003) and Schroder (2004) recently
extended their approach to alternative distributions and utility functions. However,
Camara (2003) and Schroder (2004) also focus on preferences and distributions
which yield risk neutral valuation relationships, i.e. option pricing formulas without
any preference parameter.

In contrast to these models, in this paper we do not restrict our analysis to such
risk neutral valuation relationships. The focus of this paper is to derive analytical
option pricing formulas which impose as little as possible restrictions on the shape
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of the ASPK and the distribution of the underlying asset. The option pricing formulas
are based on a generalized polynomial characterization of the ASPK. Based on this
general characterization of ASPKs, we derive analytical option pricing formulas for
lognormally, log-gamma, uniformly and normally distributed underlyings. We also
demonstrate how the approach works in general and we point out that our approach
works with many alternative distributions. Although analytical option pricing formu-
las exist for these distributions, our approach is based on much weaker assumptions
on the ASPK. For example, Heston (1993) derives an analytical option pricing for-
mula for a European option on a log-gamma distributed underlying if the ASPK has
constant elasticity. We derive an analytical option pricing formula on a log-gamma
distributed underlying for any ASPK that can be characterized by a generalized
polynomial.

While for many underlyings as, for example, stocks and stock market indices the
lognormal or the log-gamma distribution might be considered as good approxima-
tions there is no reason to assume that the ASPK should be characterized by constant
elasticity as in the Black-Scholes or the Heston models. Even if constant relative risk
aversion might be a good model for the representative investor and thus the market
pricing kernel has constant elasticity, this does not imply that the ASPK should have
constant elasticity with respect to the underlyfimdeed, recent empirical studies
by Ait-Sahalia and Lo (2000), Jackwerth (2000) and Rosenberg and Engle (2002)
suggest that even the market pricing kernel is not of the constant elasticity type.
Several papers have analyzed the impact of non-constant elasticity of the ASPK on
option prices (see for example Benninga and Mayshar, 2000, and Franke, Stapleton
and Subrahmanyam, 19§9However, they did not provide an analytical option
pricing formula. Thus, our analytical option pricing model is a valuable extension
of the existing option pricing literature. Its main advantages are:

First, the enhanced flexibility allows for more accurate analytical option pric-
ing formulas. For example, our generalized Heston-model which is based on the
log-gamma distribution seems to be a promising approach for pricing options on a
broad-based stock index as the S&P 500. The log-gamma distribution is relatively
flexible and allows to fit reasonable levels of kurtosis and skewness and the gener-
alized polynomial characterization of the ASPK is flexible enough to fit empirical
ASPKs as will be shown.

Second, our approach provides a convenient way to analyze the quantitative im-
plications of non-constant elasticity of the ASPK on option prices.

Third, the flexibility in terms of the distribution as well as in terms of the ASPK
provides also a new tool to infer ASPKs from option data. Compared to existing para-
metric methods (see, for example, Bartunek and Chowdhury, 1997), our approach has
the advantage of enhanced flexibility while still yielding a parametric estimate of the
ASPK.

Fourth, our approach does not rely on complete markets. Since only the expected
terminal distribution of the underlying needs to be known it presents an interesting
model to price options when the underlying is not traded as, for example, with
real options. We discuss the applicability of our formulas to real options and em-
ployee stock options as well as the economic intuition behind using a polynomial
approximation of the ASPK in both cases.
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This paper is closely related to the companion papetdrs and Franke (2004).

The polynomial characterization of the ASPK was originally proposedilaets and
Franke (2004) to derive analytical time-series models for the market portfolio. While
Liders and Franke analyze the time-series characteristics of the market portfolio, this
paper focuses on option prices. Alsdiders and Franke (2004) is an analysis in con-
tinuous time. This paper also extendsders and Franke (2004) since they consider
only the lognormal case. Moreover, we analyze in greater detail the characteristics
of the new ASPK class and we show that the polynomial characterization can be
used to infer empirical ASPK. Finally, in this paper empirical ASPKs estimated in
Jackwerth (2000) are fitted.

The paper is organized as follows. Section 1 presents the market model and the
class of generalized ASPKs which allows for very general shapes of the ASPK to be
matched. The characteristics of the polynomial ASPKs are also analyzed. In Section
2 the general approach to value options with generalized polynomial approximations
of the ASPK is shown. Based on this class of ASPKs, we derive an analytical pricing
formula for European options, when the final distribution at tifnis lognormal and
the option matures at time. In order to price options which mature at time< T
and to characterize the influence of the ASPK on the price and the implied volatili-
ties, we derive a generalized Black-Scholes partial differential equation for the option
price in Section 2.2.2. We solve this equation numerically for a specific version of
the general ASPK proposed above using a standard finite difference scheme. We
then turn to the cases when the underlying is log-gamma, uniformly and normally
distributed and derive analytical option pricing formulas for these cases. We compare
the different models in terms of implied volatilities. The paper is completed by a short
conclusion.

1. The model

Throughout this paper we consider a market with a given time hoffzon0. The
different examples in this paper will differ with respect to the information structure,
i.e. the filtrations will vary. We assume that the asset does not pay any dividends until
terminal dateT. The fundamental asset pricing equation states that in an arbitrage
free market the price of an asset is given by the expected future value of the asset,
where the expectation is taken under some equivalent martingale me@siaie
simplify the presentation in this paper we always assume the risk-free rate to be
zero? The equivalent martingale measu@ds defined by

QA) = / g1 dP, VAeFr,
A

with the physical measur® and the asset specific pricing kernglt. Given the
risk-free rate is zero and given the equivalent martingale measure is defined by the
ASPK ¢t 1, the asset pric&; for 0 < t < T can be written as

Fe = EC(7) =E(l¢7| ).
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wherely is the value of an information process at the terminal dagad the filtra-

tion F; characterizes the information available at timg@ < T. The information
process is exogenously given and defined as the conditional expectation of the ter-
minal value of the underlying asset. Due to the definition of the information process
It, the valuelt is equal to the terminal tim& value of the underlying. This may be
either some liquidation value at tinfeor simply the asset price of the underlying at
time T.8 It follows that the price of a European call option with strike pri¢eand
expiration dat€l is given by

Ct=E(maxit —K,0) ¢e.1| F), O0<t<T.

Throughout this paper, we will assume that the distributiomtofind the filtration
(Ft)teo, ) @re exogenously given. Our emphasis is to analyze the impact of the
ASPK on European option prices. In order to get analytical option pricing formulas
we follow Luders and Franke (2004) who characterize the ASPK by a generalized
polynomial. In the following subsections we present the polynomial characterization
and discuss its properties. Analytical formulas for European option prices are then
derived for alternative distributional assumptions of the underlying asset.

1.1. A general characterization of asset specific pricing kernels

Liders and Franke (2004) suggest to characterize the ASPK by a generalized poly-
nomial, i.e.

ZiNzlai '?i
E (ZiN=10‘i 12 ’}—t) ’

with aj, 6 € R, N € N U {oo}. To generate arbitrage-free asset prices the only
restriction which has to be imposed on the parameters is thatf) r < oo, P-

a.s. This specification is rather general so that many different characteristics of the
ASPK can be matched. Obviously the power function is a special caseNwithl

in equation (1). Since the ASPK based on the exponential function can be rewritten
as

HT = 0<t<T, (1)

oo 1 k
exponential 2 k=0 7 (—alt)
bt =

E(chziok—lg(—alT)k‘]_-t)’ 0<t<T,

it follows that
3% expldi Im) = X% 3o (1) = 2R 3% @) Jam)k

under suitable conditions oﬁ,?ii. This proves that a sum of exponential func-
tions is also a special case of the proposed polynomial. Furthermoders and
Franke (2004) show that the generalized polynomial characterization approximates
any ASPK at least as well as a Taylor expansion of the same order. This follows since
a Taylor-series approximation of a functidrix) aboutxg can be written as

Sy e <i;!(x0) x-x) =X, m (Zikzo (10X _k(_XO)k) @)
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where f® is theit" derivative of f. Hence a Taylor-series approximation of order
N is a special case of the generalized polynomial of oigr

As will be shown later the flexibility of the ASPK is of great importance for
option pricing but also for empirical investigations of option markets since recent
empirical literature points to very complicated functional forms of empirical ASPKs.
The main advantage of this new class of ASPKs, besides the fact that very flexible
shapes of the asset specific pricing kernel can be well approximated, is that these
ASPKs are characterized by a series of non-central moments of the random variable.
Hence, for many distributions of the underlying asset, the ASPK and asset prices are
easily computed. For examplejitiers and Franke (2004) show that the piiigeat
timet of a lognormally distributed cash-flow at timeT is given by

Fe=E(tét1lF), 0<t<T,

which can be rewritten as

N S

N 9

F = E(|T Z%\;:lal 5iT
EQ iz ailf 170

]%), O<t<T.

Thus, the price can be characterized by a sum of non-central moments.

In addition to these two more technical reasons for using a generalized polyno-
mial ASPK there are also economic arguments which make the generalized polyno-
mial ASPKs very interesting candidates for pricing options. The generalized poly-
nomial ASPKs are straightforward to interpret and consistent with economic theory.

Therefore, consider first the case of a real optidrowners of a company have
to decide whether or not to undertake a risky project. All owners have a similar
payment schedule, they receive a proportion of the project’s cash flow or final value,
respectively. Hence, they all have a linear sharing rule with respect to this project. It
is difficult to estimate risk preferences. Therefore it might be reasonable to assume
that all owners of the company have utility functions with respect to the project under
consideration that are characterized by a power function, i.e. CRRA or alternatively
an exponential function, i.e. CARA. In this case only one parameter has to be esti-
mated per owner. If, for example, every owner’s project specific utility function is
approximated by a power function, then the weighted objective function (the repre-
sentative owner’s utility function) would bEiN:l Ui (ailt) = ZiN:l (ai17)% . This
leads to the proposed ASPK. For similar arguments we may use our approach also
to price employee stock options which are often not traded.

Consider next the interesting characteristic of the polynomial ASPK that the elas-
ticity is bounded from above and from below. This property of the ASPK follows also
from models with heterogeneous agents (see for example Benninga and Mayshar,
2000). The analysis of the market portfolio in Benninga and Mayshar (2000) shows
that in an economy with heterogeneous agents the representative agent’s risk aversion
is bounded from above and from below by the risk aversion of the most and the least
risk averse investor. In a very simple economy the pricing kernel and the ASPK are
the same and therefore the representative investor’s risk aversion equals the elasticity
of the ASPK.
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In the following subsection we further elaborate the technical characteristics of
the polynomial specification and we compare them to alternative approaches. These
characteristics are especially important when it comes to applying our approach.

1.2. Technical properties of the pricing kernel class

The polynomial specification is a very flexible characterization which allows to
approximate very general shapes of the true ASPK. As already mentioned, the speci-
fication can be interpreted as a generalized Taylor expansion. Therefore, very general
forms of the ASPK can be approximated and the accuracy of this approximation is
depending on the smoothness of the ASPK. Mathematically, the approximation error
usingn — 1 terms is bounded by mfkrﬁt(?T)l/n!, Whereqﬁt(f‘T) is then-th derivative of

the ASPK. Hence, one obtains a useful approximation for sufficiently largehe
derivatives stay bounded.

Different parametric characterizations of the ASPK can be found in the litera-
ture. To back out empirical ASPKs from option prices Bartunek and Chowdhury
(1997) assume a power utility function and an equity process with constant mean
and volatility. This choice is very restrictive. Bliss and Panigirtzoglou (2004) also
assume a restrictive form of the representative investor’s utility function, either power
or exponential utility, which both are special cases of specification (1). To infer risk-
neutral probability density functions they use a smoothed weighted natural spline
least-squares approximation of implied volatilities. This approach allows for non-
stationary subjective probability density functions, but due to the restrictive form of
the utility function their approach excludes by definition anomalies of the ASPK’s
form, e.g. non-monotonicity as observed by Jackwerth (2000).

Bliss and Panigirtzoglou (2004) find empirically that risk aversion implied by
option data declines with the forecast horizon which implies that the ASPK is time-
dependent. Note that characterization (1) can also be further generalized to allow for
more flexibility in time by allowing the coefficients to be functions of time rather
than being constant, without affecting the main results of this paper. We just note
this possibility and do not pursue this any further here but leave it for future work.

Rosenberg and Engle (2002) propose two specifications of the ASPK. The firstis
a power function as in Bartunek and Chowdhury (1997) and Bliss and Panigirtzoglou
(2004). The results in Rosenberg and Engle (2002) show that the specification as a
simple power function restricts the form of the ASPK significantly.

In contrast, the more general specification (1) is more flexible and allows to ap-
proximate very general shapes of the true ASPK. As an example, we consider the
ASPKs given in Jackwerth (200D)These are non-parametric estimates of ASPKs
implied by S&P 500 options. From (1) we can compute the related elasticity,

Lot It Saidlf e
oly ¢t Zailﬁi .

@)

In order to fit the elasticity (3) of our specification to the empirical elasticities of
Jackwerth (2000), we need to determine the coefficientsi, such that; ~ yemp,
with M given empirical elasticitiegemp = (empk)k, (K =1, ..., M), for different
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wealth. We use a nonlinear least squares approach, in particular a sub-space trust-
region method (Coleman and Li, 1996), to minimize
; 2
min — .
iy ;(ﬂk Wempk)
Figure 1 shows a typical result. In this computation, we used specification (1)

with N = 5, i.e. a sum of five terms. The resulting ASPK exhibits a non-monotonic
behavior?

Pricing Kernel Elasticity
. 20

-5t

0.1 1

. . _15 . .
0.95 1 1.05 0.95 1 1.05

Figure 1. Fitting of empirical ASPKs. The right graph shows empirical elasticities of an ASPK implied

by S&P 500 options (marked by crosses) and the fitted five-term polynomial specification (solid line), i.e.
specification (4) with N=5. The ASPKs are published in Jackwerth (2000). The elasticity of the ASPK is
u-shaped and reaches negative values as is typical for APSKs implied by S&P 500 options after the 1987
crash. The left graph is the ASPK that corresponds to the fitted elasticities. This ASPK is hump-shaped.
While the left part of the elasticities is well fitted the fit for the right part is less satisfactory. However,
the figure illustrates that even with only five terms the polynomial approximation can fit non-monotonic
ASPKs reasonably well. The approximation error can be reduced by increasing the number of terms in
the polynomial approximation.

The second specification proposed in Rosenberg and Engle (2002) is a weighted
sum of orthogonal Chebyshev polynomials. This kind of orthogonal expansion has
the advantage that it provides a comparably precise approximation with a low number
of terms. The elements of specification (1) have no orthogonal property and hence
may involve more terms. However, specification (1) has an advantage, which be-
comes very important if the goal is to obtain explicit formulas: It uses only powers
of I7. This allows for the derivation of explicit option pricing formulas, since only
non-central moments dfr have to be computed. For this purpose, explicit formulas
exist for many approved underlying distributions.
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A different approach is conducted by Jackwerth (2000), Ait-Sahalia and Lo (2000),
and others. They use non-parametric approaches to infer the ASPK from empirical
data. Jackwerth (2000) assumes a time-constant subjective probability density func-
tion (PDF) and compares time-series of subjective PDF to time-series of risk-neutral
PDFs derived from S&P 500 data to obtain the ASPK. Non-parametric approaches
do not restrict the form of the ASPK and can provide interesting results on the ASPKs
behavior.

A parametric estimate of the true ASPK, however, has the advantage that it is
possible to enforce certain characteristics of the ASPK by restricting the parameter
set. For example, to ensure monotonicity and positivity of (1) we have the following
sufficient conditions

— Monotonicity: g < 0,
— Positivity: aj > 0.

Further restrictions on the ASPK are easily imposed. To illustrate this we discuss
now the restrictions suggested by Snow (1991). Snow (1991) proposes to study the
g™ moments of the ASPK

gt Tllq == Elpr1¥9, 1<q < oo.

As an example, we consider in the following the important apse 2 for a special
representative of (1), the two-term ASPK defined by

1 0
F-i-ﬁl-l—

N EL A

<t<T, (4)

with 8 > 0, 6 < —1. Note that using this special characterization of the ASPK yields
an ASPK which is very close to the standard one with constant elasticity. However,
this ASPK has declining elasticity. Figure 2 shows a contour plaidefr |2 as a
function of g andd. Using this information it is simple to restrict the parameter
set used for specification (1) in a way to meet with certain bound§dof 2. For
example, if we use ASPK (4) to fit empirical data and restrict the parameter set for
S, 0 to the area above the dash-dotted line in Figure 2, we obtain an ASPK that
fulfills the a-priori bound|¢¢ 12 < 1.2.

This is particularly useful for approximation at the boundaries where no or only
few data are available, and interpolation or extrapolation of these data, for exam-
ple by splines, becomes problematic. Rosenberg and Engle (2002) perform their
approximation in a moneyness region &f10% and set the ASPK outside of this
domain constant to its value at1l0% and 10%, respectively. This seems unsatis-
factory when compared to the monotonic behavior of ASPKs that stem from classic
theory. In contrast, specification (1) allows for a monotonic behavior at the boundary
(cf. Figure 1) and with restrictions imposed on the parameters as mentioned above
it as well ensures certain properties of the ASPK. Thus, specification (1) provides a
consistent approach to approximate the true ASPK also at the boarders, where only
few data are available. Therefore, the polynomial ASPK characterization appears to
be an appropriate approach also to alleviate the problem addressed, for example, in
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Figure 2. Contour plot of||®¢ T][2. The figure shows the contour plot bt 1|2 for the two-term

ASPK (4). Itillustrates the combinations gfando that satisfy certain bounds ¢y 1||. For example,
parameter combinations above the dash dotted line salidfyr|l> < 1.2. With such restrictions it is
possible to ensure that empirical estimates of ASPKs are not too erratic.

Constantinides, Jackwerth and Perrakis (2004), that reasonable ASPKs should not
be too erratic.

Finally, the numeric effort is rather small, because of the little number of param-
eters that need to be determined. For example, in the case of the empirical Jackwerth
(2000) ASPK, a sum of five terms suffices for a useful approximation and thus only
ten parameters need to be determined. A cubic spline interpolation of the same data
set involves more than 30 parameters.

Since our method is flexible in terms of the distribution as well as in terms of the
ASPK it provides a new tool to infer ASPK from option data. To do this one would
estimate the underlying distribution from past returns and then fit the option pricing
formula to the observable option data. This would result in an analytical estimate of
the ASPK.

In summary, although non-parametric approaches assure a great freedom for the
form of the ASPK and new insight into the interplay of subjective and risk-neutral
probability densities and the ASPK, they do not appear to be a suitable tool to
derive option pricing formulas. Among the parametric approaches the orthogonal
polynomial approach of Rosenberg and Engle (2002) as well as specification (1)
are flexible enough to approximate general shapes of the true ASPK and are able
to capture phenomena like non-monotonicity (increasing ASPK). In the context of
option pricing, specification (1) seems commendable, since it admits the derivation
of explicit pricing formulas.
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2. Option Pricing
2.1. The general case

Our pricing methodology works in general as follows. In an arbitrage—free market
the value of a European call (with expiration dateat timet < T is given by

Ct = E(max(lt — K, 0) ¢,1| ).

Assume that the asset specific pricing kernel is characterized by equation (1) and
defineu(t, &) = E(19'|F). This yields
7) ©)

Shainto)  Xaud, R
é|+l é.
Lyail? f(7,t)dlT — K #thl
/Z| At (Ir,Hdly /ZI ¥ it 5) (Ir,tHdly
_ Zi=l(ai Jx T'+1f(|T’t)d|T) _ K2i=1(0‘i fK 7 f(r.0dlr)
SN ain, o) SN ain, o)

where f (17, t) is the conditional density function dfr. For the underlying asset
this equation further simplifies to

Fo = E(Z'N—L'IW&'I+1 ]_—t) _ i aipt, o+ 1).
ZiN=1 aipu(t, 6) ZiN:lai u(t, )

Equations (5) and (6) show that calculating prices under the assumption that the
ASPK is characterized by a generalized polynomial basically reduces the pricing
problem to calculating non-centralized moments. As we demonstrate by the follow-
ing examples, for many distributions analytical solutions exist to these integrals and
therefore analytical option prices can be calculated.

(6)

2.2. Lognormality

We consider a market with a given time horizdn > 0 and a one-dimensional
standard Brownian motiokV on a given filtered probability spad€, F, Fi, P)
where(Ft)ie[o,1] is the filtration generated by augmented by all th&-null sets,

with F = F7. As in Franke, Stapleton and Subrahmanyam (1999) we assume that
the information process — which can be interpreted as the representative investor’s
conditional expectation about the terminal value of the stock — is governed by a
standard geometric Brownian motion without drift. Thus, we assume that the value
of the underlying asset at expiration is givenlgywhich is characterized by

d|t=0|tdw, OStST,
lo > 0,
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with constants. Hence, in this special case the terminal valgeis lognormally
distributed, as in the Black-Scholes model, with

E(t|F) =i and Valinlt|FH) =0T —t), 0<t<T.

2.2.1. An analytical formula

In this section we consider the price of a European option with strike ptiteat
expires attimd . The only assumption on the underlying asset is that its value at time
T is lognormally distributed. From equation (5) and the fact thais lognormally
distributed it follows by rearranging terms that option prices in this ASPK class can
be understood as a weighted sum of Black-Scholes prices,

oo E(wlf| ) E(max(IT = K, 0 a4 17| 71)
TEREELeds) @i
weightening factor

- N E(ailﬁi‘}-t) BSt.F.K.o), 0<t<T,
SE(XN,w1?|A) sts

(7)

Black-Scholes price for the virtual asset prlétg)

where
BS(t, i), K, o) = FN(d1) — KN(dp),
(i)
CInfe 4+ 3602(T - 1)

dy = , dp=di—o/T —t,
' oVT =t 2o

is the Black-Scholes formula for an asset prﬁq@. We call this a virtual asset price
since Ft(') is the price that would hold if the elasticity of the ASPK weke This
virtual asset pricé" is given by

FO = E(lTaiI?i‘ft) _ E(I?i+1‘ft), 0<t<T,
c(ait]7) o))

and sincd is lognormally distributed the conditional expectation ﬁfis given by

E(1217) = ex)[36204(T —t) + G E(In 17| 7).

This yields _
R = liexgdioX(T-1)], 0<t<T.
To get a better understanding of equation (7) recall that in the Black-Scholes case the

ASPK is given by a power function. N = 1 then the first term in equation (7) is 1
and the option price is given by the classical Black-Scholes equatidh>If1 then
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the option price is the weighted sum of Black-Scholes prices, where every Black-
Scholes price B@, Ft('), K, o) corresponds to an economy with constant elasticity
di. The price of the underlying asset under the generalized ASPK is given by the
weighted sum

3 e(aii])
" ; E(ZiNzlai '?i ‘ ft)

weightening factor

FV, o<t<T. (8)

The proposed class of ASPKs and a lognormally distributed terminal value therefore
yield an analytical solution for European options which is given by a weighted sum
of Black-Scholes prices. Note that this option pricing formula is written in terms

of the expected valug of the underlying. This can be sometimes more convenient,
when no market price for the underlying is available but the investor has some knowl-
edge about the expected future payoff of the underlying. Moreover, an option pricing
formula which depends explicitly on investors’ expectations and on the parameters
of the ASPK is a valuable tool to study the impact of expectations and preferences
on option prices. In the case that asset prices are available, the observable price of
the underlying is given by (8).

2.2.2. A generalized Black-Scholes partial differential equation

Let us now consider a European option that expires at timéth = < T. Again,

the only assumption on the underlying asset is that its value afftilméognormally
distributed. In order to analyze the relationship between the underlying asset price
and the option price as well as the impact on the implied volatility, it is convenient to
consider the partial differential equation which characterizes the option price, since
the analytical formulas of section 2.2.1 are not applicable. We have

Ci =E?(max(F; —K,0)| /&), O0<t<r,

where ER is the expected value with respect to the equivalent martingale me@sure
Further, in the Gaussian framework with continuous information diffusion the option
price is a deterministic functioB = C(F, t) of the asset pricE& and timet. Hence,

the option price is characterized by the following partial differential equition

oC(F,t 1
oCF. b

1 20°C(F,t)
ot 2

(E(F,0°F*~—=7—=0, F>00s<t<z, (9

whereX (F, t) is the asset price process’ volatility, with the final condition
C(F,z)=max(F —K,0, F=>0. (10)
Inserting our new class of ASPKs yields

ol SF(,1)

2(F,t) = F
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Figure 3. Forward prices under different ASPKs. The figure shows the forward priae a function of
the information procesk (left graph) and the forward pricé as a function of the information proceks
and timet (right graph). For both graphs we set terminal date- 3 and the instantaneous volatility of
the information process = 0.2. For the left graph we s¢t = 5 with § = —3, —5, or — 10. We also
include the case witj§ = 0, i.e. constant elasticity of the ASPK. For the right graph —10, 8 = 5 and
timet varies between 0 and 3.

with
SN ail9 A () exp(a2(T —t)6)

S ail A

with Aj (t) = exp(3di (6 — 1)a?(T — t)). A simple computation shows that (9) re-
duces to the standard Black-Scholes equation, in the case of the geometric Brownian
motion with F (1, t) = | exp(dio?(T —t)).

To illustrate the influence of the ASPK on the price of a European call option we
consider now (4) as a simple example of our general characterization of the ASPK.
Again, let

F(,t) =1

1 0
F+ﬁIT

L aaey 0stsT
E[E + AI1A]

HT =

with # > 0,0 < —1. The forward pricéd= = F(l, t) is given by

1+ A1+ exp((0% 4+ 0)a 2(T —1)/2)

PO =1 explo®(t - L A T exp(2 — 6 — 2)02(T —1))2)°

(11)

For § = 0 we recover the case of a geometric Brownian motion With, t) =
| exp(o?(t — T)). The same holds fof = —1. Bothp = 0 andé = —1 imply
constant elasticity of the ASPK. Hence, for those cases we are in the classical Black—
Scholes framework.

Figure 3 shows-(I,t =0)forT =3, § =5, § = —3, =5, —10 compared to
the ASPK with constant elasticityy(= 0) aswellag=(l,t)forT =3, =5, d =
—10. The major deviation between ASPK (4) and the one with constant elasticity is
for low levels ofl and for timeg far from maturity. Clearly,as — T, F(l,t) —> I,
which coincides with the fact thddr = I7.

Equation (9) involves three variablésF andt, sinceX (F, t) depends explicitly
onl. Toremovel from the equation we would need to resolve equation (11} fou
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general, it is not clear how to achieve this because of the complex structure of (11).
Therefore it is convenient to rewrite (9) in terms of the option péice C(1,t) as a
function of I andt. To perform this transformation we need the following Lemma.

LEMMA 1. Lets >0, > 0andé < —1. Then the forward price E (0, co) x
(0,00) > R, (I,t) = F(I,t), given by(11), is strictly monotone in | and t.

The proof is given in the Appendix.
Hence, the invers& ~1(-,t), (F,t) » F~1(F,t) = I(F,1), exists and its
derivative isZ2k (-, t) = (- (., t))_l, for each 0< t < T. Using the transformation

C(l,t) =C(F,1)
we obtain (by the chain rule)
oC _aCol ac(aF)—l o°C 8ZC<8F)—2 ac(aF)—zaZF
oF —aleF ol \al /] > oaF2 812\l al \ ol a1z’
With the transformatiori = ¢ — t (and immediately dropping the tilde) (9), (10)
becomes

aC 1 ,,0%C 1 , ,8%°FaC

— =201 —— 4+ 0%°——=0, 1>0,0<t< 12

o 27 et g =0 >0 0stsr (12)
C(1,0) =max(l —K,0), 1|>0. (13)

Note that (12) involves the second derivativarofvith respect td (whereF is given

by (11)). The complex structure gf—i (not given here) does not allow to find an ex-
plicit solution of (12), (13). Therefore we need to solve the problem numerically. We
use a standard explicit finite difference scheme (forward Euler). For the computation
we replaceR™ by [0, R] with R > 0. For simplicity, we consider a uniform grid
Z={lj €e[0,R]: 1l =ih,i =0,..., N} consisting ofN + 1 grid points, with

R = Nh and with space step and time stefk. Let C" denote the approximate
solution of (12) inl; at timet, = nk and seC" = (Cin)iN=O' Dirichlet conditions are
used on both boundary points:

C{ =0, Cj=Nh-K.
We choose the following parameters:
T=7r=011t=0 K=1 06=02 N=400 h=0.0, R=4.0, p=5.

The choice of the underlying asset return’s annual volatility of 20% is consistent with
the 18% p.a. on the S&P 500. The solution of the original prollHi, t) is shown

in Figure 4 for different values of. The option prices increase for smaller values

of . Note that foro = —1, i.e. the ASPK has constant elasticity, the option price

is lower than for declining elasticity. This is consistent with Theorem 1 in Franke,
Stapleton and Subrahmanyam (1999) who show that option prices are ceteris paribus
higher under declining elasticity of the ASPK than under constant elasticity of the
ASPK.
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Figure 4. Option prices under different ASPKs. The figure shows the option @ies a function of the
underlying forward price~ for four different ASPKs. We use the two-term ASPK (4) wigh= 5 and

0 = —1,-3,-5,0r — 10. Time to maturity isc = 0.1, the instantaneous volatility is = 0.2, and

the strike price iK = 1. The option prices are computed by numerical solution of PDE (12),(13). Note
that the ASPK has constant elasticity foe= —1 and that the option prices are ceteris paribus higher for
smaller values oé.

2.3. The log-gamma case

The pricing of European options on a log-gamma distributed underlying is analogous
to the pricing of options on lognormally distributed underlyings. While in the last
chapter we assumdd to be lognormally distributed we assume now thathas a
log-gamma distribution (Heston, 1993, p.937), i.e.

nit=u+oz gz =4 T@O - 0r0=sz<0o,
0, forz <0,
wherez has the gamma densig(z, §) with degrees of freedoh. The cumulative
distribution function is given by

Gz 60)= | 9(z,6)dz
/

The log-gamma case is especially interesting for options on stocks and stock indices
since the gamma distribution is flexible enough to capture the kurtosis and skewness
of stock returns. Let us consider the corresponding information process. Igisce

an information process; = E (I7| %) and thereford; = exp(x)(1 — ¢)~? with
u=Inli +0In(1— o). The degrees of freedoshof the distribution depend on the

time to maturity(T — t). This can be easily seen if we consider the corresponding
information process$; which is given by

Inli =Inlg+6ktIn(l—0)+0o%x, 0<t<T,

wherex; is a slight generalization of the gamma process defined in Heston (1993,
p.941). The process has the property thaty = 0 a.s. and for 0< s < t, the
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incrementx; — Xg is independent ofFs and has a gamma distribution with degrees
of freedom¥y (t — s). Hence the information process can also be written as

InNlg=Inls+6kt —s)IN(l—0)+0o(X —Xs), 0<s<t,

which implies that the degrees of freedom of the distributioifofonditional on

the information#; is given bydyx (T — t). Heston (1993) argues that the degrees of
freedom for monthly stock returns should be at least 6. Since we measure time in
years, this impliegy = 72.

Similarly to the derivation of option prices on lognormally distributed underly-
ings we can decompose our option pricing equation in terms which correspond to a
world where the ASPK has constant elasti¢ityHeston (1993) derives an analytical
option pricing formula for constant elasticity of the ASPK, hence the option price
under our generalized ASPK is given by a weighted sum of Heston (1993) prices:

Sl '?i )
(st ()

(i max(IT — K, 0); 19 ]:t)

i=1 E(ZiNzl aj |$i ‘ﬂ)
N E(ai 19| F) E(max(IT — K, 01?2
et |7) \ E@if |z

Ci = E(max(IT - K,0

=E

N
]—‘t) = > w; Heston,

i=1

where '
Heston = F" (1 — G(h1; 0)) — K (1 — G(hz; 0)),

for o positive and
Heston = FVG(hy; 6) — KG(h; 0),

for o negativé! with

(exp(—) ")~
1— (exp(—p) FO) ™7

hi=(UnK — u) ho=h1+InK — pu,

are the corresponding Heston (1993, p.939) option pricesmarate the weightd?
Ft(') is again the virtual asset price, defined as

RO k(i 17 el L N e L Do)’
E(S|F) (1—dio)? 1-0)"1—do)?
Note that the generalized Heston option pricing equations have the same advantages

as the generalized Black-Scholes pricing equations but they are more flexible with
respect to the underlying distribution.
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2.4. The case of a uniform distribution

If the underlying has a uniform distribution, then the density functiohro given
by f(lT) = lea forIT e [a,bland f(I7) = Ofor It ¢ [a, b]. Let us consider only
the interesting case whese< K < b. Straightforward calculation shows that then
the price of a European option forOt < T is given by

ZiN:laiI‘lé:i
Ci = E{ max(It — K, 0) N P F
E(Zi:lailTI‘ﬂ)

_/b((| —K) SNaily ) L
VAN E(XN,alf|R)/ P2 '
[Zi:l o‘iﬁzlgﬁz] [zl 1541 1q.+1]bK

TN o j9+17°
i=15+1'T |,

wheng; ¢ {—1, —2}; otherwise, similar equations hold in which(lf) appears as

the antiderivative of 117. This provides us with a simple option pricing equation for
rather general shapes of the ASPK and a uniformly distributed undefiagnore
widely used assumption is that the underlying is normally distributed. We analyze
this case in the following section.

>

2.5. The case of a normal distribution

If the underlying is normally distributed and the ASPK is an exponential function,
option prices are given by the Brennan (1979) formula. Brennan derives option prices
under the assumption that the elasticity of the ASPK with respect to the underlying
asset is proportional to the value of the underlying asset. Analogously to the previous
sections we will price options by decomposing their value into option prices which
would hold in the simple case. The following generalization of the Brennan (1979)
formula is based on our previous result that a weighted sum of exponential functions
is a special case of our generalized polynomial. Assuming that the ASPK can be
characterized

SILy @ expdilT)
E (XM expdin)| 7).
and |l is now normally distributed we get
max(It — K, 0.7 | %)

E(Gi exp(di 17)|7) E( G expi 1)
E(N, @ exp@ I1)|A) \E(@i exp(d; 17)|F)

dT = O0<t<T,

Ci =

—

max(It — K, 0)

%)

M= M

1
N

% Brennan, 0<t<T,
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where
(i) ()
- FO - K K —
Brennan = (F) — K N(t—)+ T—tn(—t)
! ( t ) o T —1t ’ a/T —1

are the corresponding Brennan (1979) option pricesiaradte the weightsN(-) is
again the cumulative standard normal density functionrgriddenotes the standard
normal density functionFt(') is the virtual asset price with

F(i)_E( ITa; expd; 17)
t = I~ =
E(ai exp(oi IT)|F)

ft) =l +a03(T—1), 0<t<T.

The information process would then be given by a Brownian motion with constant
volatility ¢ and no drift, i.e.,

di=0cdW, 0<t<T,
lp > 0.

In this case, the terminal value is normally distributed with
E(Ir|7) =l and Va(lt|R)=0%T —1), 0<t<T.

Hence, this ASPK specification generates analytical option pricing formulas for
normally distributed underlyings although the ASPK is not an exponential function
and hence the elasticity is not linear in the underlying asset.

Our previous derivations show that the option pricing approach proposed in this
paper would be consistent with many alternative distributional assumptions. For ex-
ample Cox, Ross and Rubinstein’s (1979) binomial formula and Heston’s (1993)
option pricing formula, based on the negative binomial density, as well as several
other option pricing formulas are consistent with a power function as ASPK, hence
they can be easily extended to the case where the ASPK is given by (1).

2.6. Implied Volatilities

To compute the implied volatilities of the option prices we use the following iteration
procedure. Let be the option price computed by one of the formulas of section 2
and lets @ be a given starting value. Then,

— For a given volatilitys (™ compute the Black-Scholes option pricés ™),

1) C(c™M)—C
— Computes ™D = M _ %

— Setn :=n+ 1, repeat cycle.

Let ai(”) denote then" iterate of the implied volatility at grid poink;. We stop the
iteration procedure when thg norm of the update defined by

SOV

oMY _
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becomes less than 19.

2.6.1. Different distributions with maturity t = T
Using the following parameters

T=02t=0,06=02 pg=5 6d=-10
we compute the implied volatilities in the following settings
— ASPK (4) with lognormal distribution of,
— ASPK (4) with log-gamma distribution dfr,
— ASPK (4) with normal distribution of,
— Empirical ASPK (Figure 1) with lognormal distribution of .

For the log-gamma case we set the additional parandgter 72. The results are
shown in Figure 5. Foilt lognormally distributed and an ASPK with declining
elasticity, ASPK (4), we observe (see top left of Figure 5) a significant volatility
skew. That is the implied volatility for in-the-money calls (i.e. out-of-the-money
puts) is significantly higher than the implied volatility of at-the-money calls and
out-of-the-money calls. This effect is similar to the case where we use a lognormal
distribution and the fitted empirical ASPK, however, with the empirical ASPK the
volatility skew is more pronounced (see bottom right of Figure 5). For a normally
distributed underlying and ASPK (4) we find an inversed volatility skew, that is
out-of-the-money calls have the highest implied volatility (see bottom left of Figure
5). The same holds for the log-gamma case (see top right of Figure 5). Why is the
implied volatility skew inversed in these two cases? This is easily illustrated for the
log-gamma distribution. Note that for Figure 5 and 6 we used a positive sigma and
this implies for the log-gamma distribution that asset returns are positively skewed.
Positive skewness of returns enhances the probability of extreme positive returns
which consequently increases the value of out-of-the-money calls compared to the
Black-Scholes case. While declining elasticity of the ASPK compared to constant
elasticity of the ASPK increases the value of in-the-money calls (i.e. out-of-the-
money puts) positive skewness tends to increase the value of out-of-the-money calls
(i.e. in-the-money puts).

Figure 6 illustrates this effect of higher moments on option prices. There we
consider the case th#t is log-gamma distributed with different values &f We
setT =01,t =0, 0 = 0.2 and compute the implied volatilities related to two
different ASPKs, the ASPK with constant elasticity= —1 and ASPK (4) withp =
5, 6 = —10. The implied volatilities are shown in Figure 6. The log-gamma prices
are computed using the formula in section 2.3. Therein, the paragé&eahosen in
away as to approximate the Black-Scholes pricing of at-the-money options, namely
1 = In(F") — 6/ with degrees of freedorh = 6, (T — t).

Hence, the implied volatility for the ASPK with constant elasticify=£ —1) is
approximately equal te = 0.2 at-the-money. The implied volatility has a negative
slope. This is consistent with the fact, that Heston’s formula (for positjvassigns
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Figure 5. Implied volatilities under different ASPKs and different distributions. The figure shows the
implied volatilities for four different settings. The graphs top left, top right and bottom left are all based on
the two-term ASPK (4) witld = —10 andg = 5. For the graph bottom right we use the five-term ASPK
fitted to the empirical ASPK. The underlying is lognormally distributed for the figures top left and bottom
right. For the figure top right we use a log-gamma distribution with the additional paraéixeter72.

For the figure on the bottom left we use a normal distribution. The time to maturity=isT = 0.2 and

o = 0.2 for all four settings.

higher prices to out-of-the-money call options and lower prices to in-the-money call
options, compared to the Black-Scholes formula. ddsgrows large, the gamma
distribution approaches the normal distribution and the implied volatility approaches
the Black-Scholes value for all valueslofK.

In Figure 7 we plot the implied volatility for the log-gamma distribution and
a negative sigma. Hence, in this case asset returns are negatively skewed which is
consistent with empirical findings for stock prices, especially major stock indices.
We see that with negatively skewed asset returns the implied volatility is higher for
in-the money calls (i.e. out-of-the-money puts) than for at-the-money calls (i.e. at-
the-money puts) and out-of-the money calls (i.e. in-the-money puts). Since negative
skewness and declining elasticity of the ASPK work in the same direction we ob-
serve a steeper volatility skew for declining elasticity of the ASPK than for constant
elasticity of the ASPK.

2.6.2. Lognormality for maturities t < T

For a lognormally distributed underlying we turn to the case of options expiring
at timest with = < T. Applying the same method as in the previous section we
compute the implied volatilities of the option price given by the numerical solution
of (12), (13) for different maturities. During the iteration procedure we need to
compute the Black-Scholes price of the option with respect to the forward price
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ASPK with constant elasticity (6=-1) ASPK (4) with B=5, 6=-10
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Figure 6. Implied volatilities under different ASPKs and log-gamma distributed underlyings with positive
o . The figure shows the implied volatilities for two different ASPKs. For the left graph, the ASPK has
constant elasticity, i.e. ASPK (4) with = —1 andg = 5. The ASPK in the right graph has declining
elasticity, i.e. ASPK (4) withh = —10 andp = 5. For both graphs we use a log-gamma distributed
underlying withfx = 20 (solid line),fx = 72 (dashed line) ofx = 280 (dotted line)s is positive and
equal to 0.2 and time to maturity & = 0.1.

F on an equidistant grid. Since the numerical solution of (12), (13) is a function
of I, we use an interpolation with piecewise polynomials (cubic spline) to obtain
Black-Scholes prices at the grid pointsofWe choose the following parameters:

T=011t=0 6=02 N=400, R=40, =5, 6 =—10.

Figure 8 shows the implied volatility. The minimal valuerig (0.99, 0.05) = 0.1469.

The implied volatility increases with growing maturity Note also that the implied
volatility is not symmetric. It is steeper in-the-money than out-of-the-money. These
characteristics of the implied volatility are consistent with the empirically observed
patterns of implied volatilities of S&P 500 optiotts

3. Conclusion

In this paper we derive analytical option pricing formulas for very flexible shapes of
the ASPK and many different distributions of the underlying asset. These option pric-
ing equations are based on a generalized polynomial characterization of the ASPK.
Technically speaking the polynomial characterization has the main advantage of be-
ing very flexible and allowing for analytical option pricing formulas. Furthermore it
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Figure 7. Implied volatilities under different ASPKs and log-gamma distributed underlyings with nega-
tive o. The figure shows the implied volatilities for two different ASPKs. For the left graph, the ASPK
has constant elasticity, i.e. ASPK (4) with= —1 andg = 5. The ASPK in the right graph has declining
elasticity, i.e. ASPK (4) witv = —10 andg = 5. For both graphs we use a log-gamma distributed
underlying withfx = 20 (solid line),fx = 72 (dashed line) ofx = 280 (dotted line)o is negative and
equal to - 0.2 and time to maturity 5= 0.1.

allows for reasonable approximations of empirical ASPKs with a small number of
parameters.

Our approach to derive analytical option pricing formulas is widely applicable.
First, in option pricing the derived analytical option pricing equations are more flex-
ible than existing analytical option pricing formulas and should therefore prove to
have an enhanced pricing accuracy compared to alternative analytical option pricing
equations.

Since the option pricing formulas depend on the expected value of the under-
lying asset and no price of the underlying asset is needed, our approach is also an
interesting model for options on non-traded underlyings where a market value of the
underlying is not available.

Due to the flexibility of the polynomial characterization of the ASPK our ap-
proach will help to evaluate the quantitative implications of non-constant elasticity
of the ASPK on option prices. Given our option pricing formulas it is straightforward
to analyze the quantitative impact of alternative assumptions on the underlying asset
and the ASPK on option prices. Up to now, only qualitative results on these relations
were known, see e.g. Franke, Stapleton and Subrahmanyam (1999).

The numerical properties of the polynomial characterization of the ASPK point
out that our new approach may also be used to infer empirical ASPK from op-
tion prices. It somewhat combines the advantages of existing parametric approaches
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Figure 8. Implied volatilities for different maturities < T. The figure shows the implied volatilities
under the two-term ASPK (4) for different maturitie®B < ¢ < 0.1. The instantaneous volatility of the
information process is = 0.2, current time i = 0, and the terminal dat€ = 0.1. The ASPK has
declining elasticity with = 5 andé = —10. The option prices are computed by numerical solution of
PDE (12), (13). Note that the implied volatility is skewed and increases with growing maturity

with the greater flexibility of nonparametric approaches. It therefore seems to be a
promising approach for future empirical analysis of ASPKs. We leave the empirical

implementation for future research.

Appendix A. Proof of Lemma 1
We obtain from (11)

oF eaz(t—T)(1+ﬂ(5+2)|§+le%(62+5)z72(T—t))
ol 14 Bl o+1es@?—0-20%(T-1)

eaz(t—T)(1+ﬂ|a+1e%(52+5)02(T—t))ﬁ(5+ 1)|6+1e(%(62—6—2)02(T—t))

1+ Bl (6+l)e%(52—5_2)62(-|-_t))2
:[(1 4 B + 2)1 917 @ HIT-0) 42| 20+2¢0(P=D)(T-)
~ ol JHe%azwz_a_z)(T_t))eaz(t_T)] [1 + pl "+1e%<52—a—2)oz(T—t>]_2.
The denominator is positive, therefore we only have to consider the numerator,
N =1 4 281 9+1e3r @ HT—0) | 2| 25+2g0 (0~ D(T )

+ B0l 5+1(e%"2(52+5)”‘” _ e%az(éz—é—Z)(T—t))).

The first three terms are non-negative or positive, respectively. &hged) — (92 —
0 —2) =20+ 2 < 0, we havee™ 297 “+D(t=T) _ g=30%(+10-2)t=T) < 0 and the
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fourth term is non-negative, too. Furthermore

2g02(t-T) 1@+ G (T-y _ (15| 5+1(52 1 5)e0+0) % (T—1)
oF 102 D14 p1ot1e )—(AB191(52 + H)e )]
ot 14 p1o+1g@?=0-2% (T-)

|o.2e02(t—T)(1+ il 6+1e(52+5)“—22(T—t))ﬂ| 5+1(52 _5— 2)9(52—5—2)§(T—t)
+ .

21+ Bl HH+1e@=0-2% (T-1))2

A computation similar as above shows that > 0.

Notes

1 The asset specific pricing kernel is the pricing kernel conditioned on the payoffs of an asset. For a
detailed discussion of the pricing kernel and the asset specific pricing kernel we refer the reader to the
excellent textbook of Cochrane (2001) as well as to the articlesiofata (2001) and&@nara (2003).

2 This is, for example, analyzed in depth b@@ara (2003).

3 Closely related are also articles that analyze heterogeneous expectations and the consequences for
option pricing, see for example Huang (2003) and Ziegler (2002).

4 Alternatively asset prices could be interpreted as forward prices.

5 Here and in the followindE denotes the expected value with respect to the subjective meRsure

6 Assuming such an exogenous information process to model the information in the economy is com-
mon. The main advantage of this approach is that it is a parsimonious and intuitive way to characterize
the filtration, see Franke, Stapleton and Subrahmanyam (1999).

7 See lilders and Franke (2004).

8 The data on empirical elasticities of ASPKs were kindly provided by Jens Jackwerth. These empirical
ASPKs are published in Jackwerth (2000).

9 The specific result also depends on the conditions that are imposed on the behavior for levels of
moneyness, where no empirical data is available.

10 This follows from the Theorem of Feynman-Kac (see, e.g. Karatzas and Shreve, 1991). In order to
apply the Theorem of Feynman-Kac the expected value has to exist. Since the underlying asset is basically
a weighted sum of lognormally distributed assets this requirement holds.

11 This formula corrects a typing error in formula (10b) in Heston (1993).

12 It follows from the assumptions on the information process that the degrees of fréedmmgiven
by 0 = Ox(T —1t).

13 see also Haugen (2001) for a presentation of option prices for uniformly distributed underlyings
under the assumption of risk-neutrality.

14 Note also that for the assumed uniform distributionfer E(I?i |Ft) can be rewritten as

g 0y aka—h)%i K
k=0 (k') 4o -k °

15 see Rubinstein (1994), Jackwerth and Rubinstein (1996), Ait-Sahalia and Lo (1998) and Carr and
Wu (2003).
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