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A semi-smooth Newton method for an inverse problem in optiorpricing

Bertram During *
Institut fir Analysis und Scientific Computing, Technisddniversitat Wien, 1040 Wien, Austria.

We present an optimal control approach using a Lagrangsanework to identify local volatility functions from giverption
prices. We employ a globalized sequential quadratic progrimg (SQP) algorithm and implement a line search strategy.
The linear-quadratic optimal control problems in eacheitien are solved by a primal-dual active set strategy wteeld$ to

a semi-smooth Newton method. We present first- and secatat-analysis as well as numerical results.
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1 Introduction

In an idealized financial market the price of a European optam be obtained as the solution of the celebrated Blacki€gh
equation. This equation has been derived under severahasems, in particular that the volatility of the underlgiasset
is constant. However, if one computes thaplied volatility from market option prices by inverting the closed-form ol

to the Black-Scholes equation, it is typically not constdnit rather shows amile or skew pattern. These observations lead
to a natural generalization of the Black-Scholes model@p the constant volatility by lacal volatility function o(T, E),
whereT denotes the time to maturity arftithe exercise price. Then, the option pric€T’, F) as a function of the exercise
time T and the exercise pricE satisfies the (forward) differential equation

Vr(T,E) — 30*(T, E)E*Vgp(T,E) + rEVg(T,E) =0, T >0, E >0, (1)

with initial conditionV (0, E') = max(Sy — F,0) and boundary conditioris (7, 0) = So, limg_... V(T, E) = 0, whereSy
denotes the current price of the underlying [1]. Our goabiglentify from market option prices the volatility functian (1).

2 The optimal control problem

To streamline the presentation we restrict ourselves ta#se of zero interest rate < 0) in the analytical part of the
paper. ForR > E > M > 0andT > 0letQ = (M,R) andQ = (0,7) x Q. LetV = {9 € H(Q) : p(R) = 0},
W(0,T)={p € L*0,T;V) : ¢ € L*(0,T;V")},andH>1(Q) = H'(0,T; L*(Q))N L?(0, T; H*(Q2)). We define the two
Hilbert spacesX = H*1(Q) x W(0,T)andY = L2(0,T; H}(Q)) x L*(0,T) x L*(Q2) and introduce the bilinear operator
e=(e1,e9,e3): X =Y’ by

e1(w) = ur — qugg, es(w)=u(-,M)—up, es(w)=u(0)— uo, 2
wherew = (g,u). Our goal is to identify the coefficient(t, z) = 1 E*0*(T, E). We use the cost functiondl: X — [0, c0),

1 p
J(w) = B [u(T) = ur|* dz + 5 llg — quipvl(Q) forw = (¢,u) € X,
Q
whereur is a given observed option price at the end-tifhey,; is ana priori guess an@ > 0 is a regularization parameter.
The parameter identification problem is given by a consti@ioptimal control problem in the following form

minJ(w) St we K,y and e(w) =0, (3)

whereK,q = Qag x W(0,T) andQaq = {q € H*'(Q) : gmin < ¢ < gmax in Q a.e} is the set of admissible coefficient
functions. Note that both the state variablend the coefficienj are considered as independent variables while the realizat
of (2) is an explicit constraint. The existence of at least (global) solution to (3) was proved in [2].

The bilinear operatos : X — Y is twice continuously Fréchet differentiable and the magp — ¢’ (w) is Lipschitz
continuous onX. Moreover, its linearization’(w) : X — Y’ atany pointw = (¢, u) € K,q IS surjective. This guarantees
a constraint qualification, so that there exists a (unigagrange multiplien* satisfying the first-order necessary optimality
condition, i.e. stationarity of the Lagrange functioddlv, \) = J(w) + (e(w), A) associated with problem (3). Using an
error estimate for the Lagrange multipli®r one can ensure that a second order sufficient optimalitgidon holds if the
residuall|u*(T") — ur||L2(q) is sufficiently small. Furthermore, there exists a uniqugraage multiplier associated with the
inequality constraints for the optimal coefficierit(for details, see [2]).
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Strike & 95 97.5 100 102.5 105
True value 0.1500 0.1500 0.1500 0.1500 0.1500
Good guess 0.1454 0.1500 0.1517 0.1506 0.1470
Good guess & noise  0.1457 0.1500 0.1517 0.1506 0.1470
Bad guess 0.1458 0.1500 0.1517 0.1506 0.1472

Bad guess & noise 0.1460 0.1500 0.1517 0.1506 0.1472
Good guess, fine grid  0.1488 0.1500 0.1509 0.1503 0.1494

Table 1 Reconstructed volatilities for different strikés Fig. 1 Local volatility functiono (E, T).

3 The optimization method

The method is based on an iterative algorithm proposed in\# initialize our method and choose updates in such a way,
that the constraints;(w™) = 0 andes(w™) = 0 are fulfilled by construction for all iterates™. We are left with only one
constrainte; (w) = 0. In anouter loop, we minimize at each iteration a quadratic approximatiothefLagrangian over an
affine subspace of solutions, i.e. we solve for the update= (4™, 6u™) the linear-quadratic optimal control problem

min L(w™, A")+L'(w™, A")dw—+3 L (w™, A")(0w™, 6w™)  st. e} (w™)dw"+e1(w™) =0, gmin < ¢"+0¢" < Gmax.

This subproblem involves linear inequality constraintst fhe solution of the subproblems in ammer loop we use a primal-
dual active set method [3]. In contrast to [2], here we do terate until convergence, but only perform one step of the
primal-dual active set method in each SQP iteration. Tladdeo a semi-smooth Newton method [5], that convergesijocal
superlinearly. The relationship between the primal duaVaset strategy and semi-smooth Newton methods has beestin
tigated in [4]. We also implement a globalization strateggtis realized by a modification of the Hessian matrix and liyea
search strategy to ensure that every SQP step is a desaetttatic Since we do not iterate th@er loop until convergence,
the inequality constraints are not necessarily fulfilleceacth SQP iteration. Therefore, we need to modify the linechea
strategy presented in [2]. To determine the step size pdeanié we here use a first-order variation of the merit function

" (™) = J(W+amow™)+u |ler (W™ 4+ a”éw")HYl/—i—Q | max{0, ¢" — gmax}l p2(g) +7 | max{0, gmin — ¢" }H|2(q)-

For appropriately chosen penalty parameters, our linebesrategy is then based on the well-known Armijo rule.

4 Numerical experiments

For the discretization we use linear finite elements on aundferm spatial grid with 140 nodes locally refined aroung: S.
Intime, we employ a fixed, non-equidistant grid consistihg®points with small time steps closette= 0. The linear systems
are solved by a preconditioned GMRES method. We define a asiogesequence of regularization paramefeand start
our method with the highest value. Then we subsequentlyedserthe regularization parameter, restarting the metibe a
minimizers obtained in the previous step. As a first exampeapply our method to an artificial data set of Black-Scholes
prices withSy, = 100, » = 0, one month to maturity and constant volatility= 0.15. We consider four different cases with
priori guessy; = %aﬁxQ. We use a ‘gooda priori guessr; = 0.16 and a ‘bad’a priori guessr, = 0.1, and compare these
results to those from runs where we addet)s uniformly distributed noise. Table 1 shows the results. Vblatilities are
well identified, with small differences remaining due toalétization errors, which can be reduced by using a fineragisken

in a fifth run on a grid with halved mesh width in space and ti@eerall, the method shows only a very small dependence on
the chosem priori guess and it is robust regarding to additional data noisa.skcond example we use market data of FTSE
index call options. The resulting local volatility functigs shown in Figure 1. It is skewed and decreasing as timeoappes
maturity. This is consistent with empirically observedtpats in equity index options.
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