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A semi-smooth Newton method for an inverse problem in optionpricing

Bertram Düring ∗

Institut für Analysis und Scientific Computing, Technische Universität Wien, 1040 Wien, Austria.

We present an optimal control approach using a Lagrangian framework to identify local volatility functions from given option
prices. We employ a globalized sequential quadratic programming (SQP) algorithm and implement a line search strategy.
The linear-quadratic optimal control problems in each iteration are solved by a primal-dual active set strategy which leads to
a semi-smooth Newton method. We present first- and second-order analysis as well as numerical results.
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1 Introduction

In an idealized financial market the price of a European option can be obtained as the solution of the celebrated Black-Scholes
equation. This equation has been derived under several assumptions, in particular that the volatility of the underlying asset
is constant. However, if one computes theimplied volatility from market option prices by inverting the closed-form solution
to the Black-Scholes equation, it is typically not constant, but rather shows asmile or skew pattern. These observations lead
to a natural generalization of the Black-Scholes model replacing the constant volatility by alocal volatility function σ(T, E),
whereT denotes the time to maturity andE the exercise price. Then, the option priceV (T, E) as a function of the exercise
timeT and the exercise priceE satisfies the (forward) differential equation

VT (T, E) − 1
2σ2(T, E)E2VEE(T, E) + rEVE(T, E) = 0, T > 0, E > 0, (1)

with initial conditionV (0, E) = max(S0 − E, 0) and boundary conditionsV (T, 0) = S0, limE→∞ V (T, E) = 0, whereS0

denotes the current price of the underlying [1]. Our goal is to identify from market option prices the volatility function in (1).

2 The optimal control problem

To streamline the presentation we restrict ourselves to thecase of zero interest rate (r = 0) in the analytical part of the
paper. ForR > E > M > 0 andT > 0 let Ω = (M, R) andQ = (0, T ) × Ω. Let V = {ϕ ∈ H1(Ω) : ϕ(R) = 0},
W (0, T ) = {ϕ ∈ L2(0, T ; V ) : ϕt ∈ L2(0, T ; V ′)}, andH2,1(Q) = H1(0, T ; L2(Ω))∩L2(0, T ; H2(Ω)). We define the two
Hilbert spacesX = H2,1(Q) × W (0, T ) andY = L2(0, T ; H1

0(Ω)) × L2(0, T )× L2(Ω) and introduce the bilinear operator
e = (e1, e2, e3) : X → Y ′ by

e1(ω) = ut − quxx, e2(ω) = u(· , M) − uD, e3(ω) = u(0) − u0, (2)

whereω = (q, u). Our goal is to identify the coefficientq(t, x) = 1
2E2σ2(T, E). We use the cost functionalJ : X → [0,∞),

J(ω) =
1

2

∫

Ω

|u(T )− uT |
2 dx +

β

2
‖q − qd‖

2
H2,1(Q) for ω = (q, u) ∈ X,

whereuT is a given observed option price at the end-timeT , qd is ana priori guess andβ > 0 is a regularization parameter.
The parameter identification problem is given by a constrained optimal control problem in the following form

min J(ω) s.t. ω ∈ Kad and e(ω) = 0, (3)

whereKad = Qad × W (0, T ) andQad =
{

q ∈ H2,1(Q) : qmin ≤ q ≤ qmax in Q a.e.
}

is the set of admissible coefficient
functions. Note that both the state variableu and the coefficientq are considered as independent variables while the realization
of (2) is an explicit constraint. The existence of at least one (global) solution to (3) was proved in [2].

The bilinear operatore : X → Y ′ is twice continuously Fréchet differentiable and the mapping ω 7→ e′′(ω) is Lipschitz
continuous onX . Moreover, its linearizatione′(ω) : X → Y ′ at any pointω = (q, u) ∈ Kad is surjective. This guarantees
a constraint qualification, so that there exists a (unique) Lagrange multiplierλ∗ satisfying the first-order necessary optimality
condition, i.e. stationarity of the Lagrange functionalL(ω, λ) = J(ω) + 〈e(ω), λ〉 associated with problem (3). Using an
error estimate for the Lagrange multiplierλ, one can ensure that a second order sufficient optimality condition holds if the
residual‖u∗(T ) − uT ‖L2(Ω) is sufficiently small. Furthermore, there exists a unique Lagrange multiplier associated with the
inequality constraints for the optimal coefficientq∗ (for details, see [2]).
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StrikeE 95 97.5 100 102.5 105
True value 0.1500 0.1500 0.1500 0.1500 0.1500
Good guess 0.1454 0.1500 0.1517 0.1506 0.1470
Good guess & noise 0.1457 0.1500 0.1517 0.1506 0.1470
Bad guess 0.1458 0.1500 0.1517 0.1506 0.1472
Bad guess & noise 0.1460 0.1500 0.1517 0.1506 0.1472
Good guess, fine grid 0.1488 0.1500 0.1509 0.1503 0.1494

Table 1 Reconstructed volatilities for different strikesE.

0.95
1

1.05
1.1

1.15
1.2 0.02

0.03
0.04

0.05
0.06

0.07
0.08

0.09
0.24

0.26

0.28

0.3

Time t

Moneyness E/S
0

V
o

la
ti

lit
y 

σ

Fig. 1 Local volatility functionσ(E,T ).

3 The optimization method

The method is based on an iterative algorithm proposed in [2]. We initialize our method and choose updates in such a way,
that the constraintse2(ω

n) = 0 ande3(ω
n) = 0 are fulfilled by construction for all iteratesωn. We are left with only one

constraint,e1(ω) = 0. In anouter loop, we minimize at each iteration a quadratic approximation ofthe Lagrangian over an
affine subspace of solutions, i.e. we solve for the updateδωn = (δqn, δun) the linear-quadratic optimal control problem

min L(ωn, λn)+L
′(ωn, λn)δω+ 1

2 L′′(ωn, λn)(δωn, δωn) s.t. e′1(ω
n)δωn+e1(ω

n) = 0, qmin ≤ qn+δqn ≤ qmax.

This subproblem involves linear inequality constraints. For the solution of the subproblems in aninner loop we use a primal-
dual active set method [3]. In contrast to [2], here we do not iterate until convergence, but only perform one step of the
primal-dual active set method in each SQP iteration. This leads to a semi-smooth Newton method [5], that converges locally
superlinearly. The relationship between the primal dual active set strategy and semi-smooth Newton methods has been inves-
tigated in [4]. We also implement a globalization strategy that is realized by a modification of the Hessian matrix and by aline
search strategy to ensure that every SQP step is a descent direction. Since we do not iterate theinner loop until convergence,
the inequality constraints are not necessarily fulfilled ineach SQP iteration. Therefore, we need to modify the line search
strategy presented in [2]. To determine the step size parameterαn we here use a first-order variation of the merit function

ϕn(αn) = J(ωn+αnδωn)+µ ‖e1(ω
n + αnδωn)‖Y ′

1

+ζ ‖max{0, qn − qmax}‖L2(Q)+η ‖max{0, qmin − qn}‖L2(Q).

For appropriately chosen penalty parameters, our line search strategy is then based on the well-known Armijo rule.

4 Numerical experiments

For the discretization we use linear finite elements on a non-uniform spatial grid with 140 nodes locally refined aroundx = S0.

In time, we employ a fixed, non-equidistant grid consisting of 35 points with small time steps close tot = 0. The linear systems
are solved by a preconditioned GMRES method. We define a decreasing sequence of regularization parametersβ and start
our method with the highest value. Then we subsequently decrease the regularization parameter, restarting the method at the
minimizers obtained in the previous step. As a first example we apply our method to an artificial data set of Black-Scholes
prices withS0 = 100, r = 0, one month to maturity and constant volatilityσ = 0.15. We consider four different cases witha
priori guessqd = 1

2σ2
dx2. We use a ‘good’a priori guessσd = 0.16 and a ‘bad’a priori guessσd = 0.1, and compare these

results to those from runs where we added0.1% uniformly distributed noise. Table 1 shows the results. Thevolatilities are
well identified, with small differences remaining due to discretization errors, which can be reduced by using a finer gridas seen
in a fifth run on a grid with halved mesh width in space and time.Overall, the method shows only a very small dependence on
the chosena priori guess and it is robust regarding to additional data noise. Ina second example we use market data of FTSE
index call options. The resulting local volatility function is shown in Figure 1. It is skewed and decreasing as time approaches
maturity. This is consistent with empirically observed patterns in equity index options.
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