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Abstract. We consider a nonlinear fourth-order diffusion equation that arises
in denoising of image densities. We propose an alternative direction implicit
(ADI) splitting method for its numerical solution. To treat the high-order and

mixed derivative terms in the equation we adopt an ADI method by Hundsdor-
fer and Verwer to the present setting. The paper is furnished with numerical
results for the evolution of simple densities and for image denoising.

1. Introduction

In this paper we consider the following nonlinear fourth-order evolution equa-
tion

(1.1) ut = −div

(

u∇div

(

∇u

|∇u|

))

in Ω ⊂ R
2,

with an appropriate initial condition u0 and periodic boundary conditions. We
solve this equation numerically by an ADI splitting technique and discuss its scale
space properties by means of numerical simulations.

This equation can be formally derived as the L2 Wasserstein gradient flow

(1.2)
ut = div(u∇E ′(u)),

u(0, x) = u0(x) ≥ 0,

with normalized mass
∫

Ω
u0 dx = 1 and the total variation functional E defined by

[2, 11]

(1.3) E(u) := |Du|(Ω) = sup
g∈C∞

0
(Ω;Rd),‖g‖∞≤1

∫

Ω

u ∇ · g dx,

d = 1, 2. In [8] this equation first appeared in connection with density estimation
and smoothing. Therein, the authors propose to compute a smoothed version u of
a given probability density u0 as a minimiser of

(1.4)
1

2
W2(u0L

d, uLd)2 + αE(u).

Here, W2(u0L
d, uLd) is the 2–Wasserstein distance between u0L

d and uLd (Ld de-
notes the Lebesgue measure in R

d, d = 1, 2) and defines a distance within the space
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of probability measures [3, 20, 21, 1, 17]. This minimisation problem can be
interpreted as a discrete approximation of a solution of the gradient flow (1.1) of
E(u) with respect to the L2 Wasserstein metric. More precisely, the minimisation of
(1.4) represents one timestep of De Giorgi’s minimising movement scheme [3, 16]
to the functional E(u) with timestep α. By construction the regularisation method
(1.4) proposed in [8] is non-smooth, i.e., edge preserving, and conserves mass, i.e.,
is density preserving. In [8] the numerical solution of (1.4) has been done by a
combination of the Benamou-Brenier formulation [4] for the Wasserstein distance,
an augmented Lagrangian method and an operator splitting technique [12, 6]. This
numerical procedure is in the flavour of several recently proposed numerical schemes
for equations with gradient flow structure, cf., e.g., [9, 5, 10, 7, 13] and references
therein.

In this paper we shall investigate equation (1.1) numerically by implement-
ing an operator splitting technique. More specifically, we rewrite the fourth-order
equation (1.1) as a system of two second-order equations. Then we discretise semi-
implictly in time using a non-classical ADI-splitting in the spirit of [15, 14]. The
latter is able to deal with differential equations involving mixed derivative terms.
Note, that the proposed numerical scheme is not in the flavour of the gradient-
flow solutions mentioned above. In fact, it does not use the Wasserstein-gradient
framework to accomplish a solution of (1.1). Hence, it is not necessarily density
preserving. We therefore monitor mass and positivity of our discrete solutions in
our numerical experiments presented in section 3. We find that the solutions remain
positive throughout and the initial mass is preserved (up to a relative numerical
roundoff error of 10−6).

The paper is organised as follows. In section 2 we revisit self-similar solutions
of equation (1.1) in the continuum case. The main part is devoted to the pre-
sentation of the new operator splitting scheme to solve (1.1) numerically. After
introducing the finite difference operators for the space discretisation in section
3.1, we present the fully discrete scheme in section 3.2. In section 3.3 the paper
concludes with a numerical discussion focusing on the high-contrasting effects and
multiscale properties of (1.1).

2. Self-similar solutions of the equation

To get a better understanding of the kind of solutions we can expect to receive
from the evolution of (1.1) we first consider a special type of self-similar solutions
that can be explicitly computed in one space dimension. In particular, in [8] the
authors compute an interesting special class of solutions of self-similar structure of
(1.4). The basis of the computations therein is the characterization of the optimal
transport between a measure and its rescaled version, derived in [4], i.e., they look
for solutions u that fulfill

(2.1) u0(x) dx =
1

δd
u
(x

δ

)

dx,
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Figure 1. Self-similar Solutions for the total variation gradient flow.

with scaling parameter δ > 0. In [8] the authors further assume u(x) ≥ 0 in a
neighbourhood around zero and consider the following ansatz for u

(2.2) u(x) =

{

β, x ∈ (−x0, x0)

0, otherwise,

where β > 0 is a positive constant. This yields self-similar solutions of (1.4) of
the form (2.2) with β = 1/(2x0) and x0 = 6

√

9α
a , for a constant a = a(δ) and a

regularisation parameter α > 0. Please compare Figure 1(e) for a sketch of such
solutions for different choices of α.

Equation (1.1) possesses the same type of self-similar solutions, where the evo-
lution time takes on the role of the regularisation parameter α, cf. section 3.3 for
numerical examples.

3. Numerical solution with ADI splitting

3.1. Discretisation. For the numerical implementation we need to approxi-
mate the derivatives in the differential equations involved in our models. We con-
sider finite differences for this and use periodic boundary conditions. Let Ω = [0, 1]2

be the two-dimensional space domain that we consider for our problem. Let
T > 0 denote the final time for the evolution. We partition the space-time-cylinder
[0, 1]2 × [0, T ] into equidistant cells [xi, xi+1]×[yj , yj+1], i, j = 0, . . . , N − 1, with
xi = ih and yj = jh and step-size h = 1/N , and time intervals [tn, tn+1] for

n = 0, . . . ,M − 1 with tn = ∆t n and time-steps ∆t = T
M . Let u be an arbi-

trary (sufficiently smooth) function defined on Ω × [0, T ], then we denote with
Un
i,j ≈ u(xi, yj , tn) the approximation of u in the node (xi, yj) at time level tn.

We discretise all first derivatives with central differences with periodic boundary
conditions. More precisely, we approximate (Do

xU
n)i,j ≈ ux(xi, yj , tn), where

(Do
xU)i,j =

{

ui+1,j−ui−1,j

2h i = 1, . . . , N − 1
u1,j−uN−1,j

2h i = 0, N.
(3.1)
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The first derivative of u with respect to y is approximated analogously by (Do
yU)i,j

and we write Do
∇U for the corresponding approximation of the gradient vector ∇u.

The second derivatives are either approximated by the five-point formula, e.g., the
Laplace operator ∆u = uxx + uyy is approximated by
(3.2)

(D∆U)i,j = (DxxU)i,j + (DyyU)i,j =
ui+1,j + ui−1,j + ui,j+1 + ui,j−1 − 4ui,j

h2
,

or by a smoother finite difference approximation that averages over every second
grid point only, i.e.,
(3.3)

(Do
∆U)i,j = (Do

xxU)i,j + (Do
yyU)i,j =

ui+2,j + ui−2,j + ui,j+2 + ui,j−2 − 4ui,j

4h2
.

Both discrete Laplacians are second-order accurate.

3.2. The ADI scheme. In the following we shall apply an ADI splitting
scheme to the numerical solution of (1.1). To do so we first regularise the equation

by replacing |∇u| by |∇u|ǫ :=
√

u2
x + u2

y + ǫ, with 0 < ǫ ≪ 1, and get

(3.4) ut = −div

(

u∇div

(

∇u

|∇u|ǫ

))

.

This is a common procedure for evolution equations of the total variation functional,
e.g., cf. [19, 18]. One possibility to apply an ADI-splitting to (3.4) would be to
adopt the method in [22], where the authors consider ADI splitting for fourth-order
nonlinear equations like the thin-film equation together with an outer Newton-
iteration.

Here, we rewrite the fourth-order evolution equation (3.4) as a system of two
second-order equations for (u, v)

ut = div (u∇v) ,

v = −div

(

∇u

|∇u|ǫ

)

.

We approximate the nonlinear differential operators by linear ones in the following
way

ut = ∇u · ∇ṽ + ũ∆v,(3.5)

v = −
ǫ+ ũ2

y

|∇ũ|3ǫ
uxx −

ǫ+ ũ2
x

|∇ũ|3ǫ
uyy + 2

ũxũy

|∇ũ|3ǫ
uxy,(3.6)

where (ũ, ṽ) is a given pair of functions, which will be the solution in the old time
step in the ADI scheme below. Using the notation from section 3.1 we replace the
continuous space derivatives with its finite difference approximations as follows

Ut = Do
∇U ·Do

∇Ṽ + ŨDo
∆V,(3.7)

V = −
ǫ+ (Do

yŨ)2

|Do
∇Ũ |3ǫ

DxxU −
ǫ+ (Do

xŨ)2

|Do
∇Ũ |3ǫ

DyyU + 2
Do

xŨDo
yŨ

|Do
∇Ũ |3ǫ

DxyU,(3.8)

where (U, V ) is the semi-discrete approximation to a solution of (3.5)-(3.6). Note
that the Laplace operator applied to v in the first equation (3.5) is approximated by
the second-order finite difference approximation (3.3). This is a smoother version of
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the 5-point formula (3.2) and turned out to be necessary for a stable approximation
of (1.1).

With the above finite difference matrices, the system of equations (3.7)-(3.8)
can be written as

(

Ut

V

)

= F (U, V ) =

(

A B
C D

)

·

(

U
V

)

,

with corresponding matrices A,B,C,D ∈ R
N2×N2

. Then, F (U, V ) is split into its
mixed derivative terms F0, and its terms F1 and F2 with derivatives with respect
to x and y only, respectively. This gives

F (U, V ) = F0(U, V ) + F1(U, V ) + F2(U, V ),

with

F0(U, V ) =

(

A0 B0

C0 D0

)

·

(

U
V

)

=

(

O O

2
Do

xŨDo
yŨ

|Do
∇
Ũ |3ǫ

Dxy O

)

·

(

U
V

)

,

F1(U, V ) =

(

A1 B1

C1 D1

)

·

(

U
V

)

=

(

Do
xṼ Do

x ŨDo
xx

−
ǫ+(Do

yŨ)2

|Do
∇
Ũ |3ǫ

Dxx O

)

·

(

U
V

)

,

F2(U, V ) =

(

A2 B2

C2 D2

)

·

(

U
V

)

=

(

Do
yṼ Do

y ŨDo
yy

−
ǫ+(Do

xŨ)2

|Do
∇
Ũ |3ǫ

Dyy O

)

·

(

U
V

)

.

For an initial condition (U0, V 0) we now look for approximate solutions (Un, V n) ≈

(u(tn), v(tn)) where tn = n∆t, n = 1, 2, . . ., of (3.5)-(3.6). With (Ũ , Ṽ ) = (Un−1, V n−1)
and adapting the ADI scheme from [14] to our setting we compute these approxi-
mate solutions as

(1)

(

Y 1
0

Y 2
0

)

=

(

Un−1 +∆tF 1(Un−1, V n−1)
F 2(Y 1

0 , V
n−1)

)

,

(2)

(

Y 1
1

Y 2
1

)

=

(

Y 1
0

Y 2
0

)

+

(

1
2∆t(F 1

1 (Y
1
1 , Y

2
1 )− F 1

1 (U
n−1, V n−1))

F 2
1 (Y

1
1 , Y

2
1 )− F 2

1 (U
n−1, V n−1)

)

,

(3)

(

Y 1
2

Y 2
2

)

=

(

Y 1
1

Y 2
1

)

+

(

1
2∆t(F 1

2 (Y
1
2 , Y

2
2 )− F 1

2 (U
n−1, V n−1))

F 2
2 (Y

1
2 , Y

2
2 )− F 2

2 (U
n−1, V n−1)

)

,

(4)

(

Ỹ 1
0

Ỹ 2
0

)

=

(

Y 1
0 + 1

2∆t(F 1(Y 1
2 , Y

2
2 )− F 1(Un−1, V n−1))

F 2(Ỹ 1
0 , V

n−1)

)

,

(5)

(

Ỹ 1
1

Ỹ 2
1

)

=

(

Ỹ 1
0

Ỹ 2
0

)

+

(

1
2∆t(F 1

1 (Ỹ
1
1 , Ỹ

2
1 )− F 1

1 (Y
1
2 , Y

2
2 ))

F 2
1 (Ỹ

1
1 , Ỹ

2
1 )− F 2

1 (Y
1
2 , Y

2
2 )

)

,

(6)

(

Un

V n

)

=

(

Ỹ 1
1

Ỹ 2
1

)

+

(

1
2∆t(F 1

2 (Ỹ
1
2 , Ỹ

2
2 )− F 1

2 (Y
1
2 , Y

2
2 ))

F 2
2 (Ỹ

1
2 , Ỹ

2
2 )− F 2

2 (Y
1
2 , Y

2
2 )

)

.

Here, the superindices of the F terms, i.e., F j , j = 1, 2, denote the first or second
row of the respective coefficient matrix. The first (1) and fourth (4) computation of
the algorithm are explicit time-steps taking care of the mixed derivative terms. The
second (2) and fifth (5), and the third (3) and sixth (6) computations are implicit
time-steps for the terms with pure x- and pure y-derivatives, respectively. These
implicit steps consist only of tridiagonal systems and are therefore inexpensive to
solve. Additionally, the matrices from step (2) and (3) reappear in (5) and (6) with
different right hand sides, respectively. Hence, they have to be factorized only once.
Overall, in every time step of the scheme, only two tridiagonal systems are solved.
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3.3. Numerical results. We conclude the paper with a presentation of nu-
merical results achieved with the ADI discretisation presented above. Special focus
is laid on the presentation of the high-contrasting and multiscale properties of the
equation. Due to the nonlinearity introduced by the total variation the equation
preserves and enhances sharp features in the solution. This results in a high-
contrasting effect. Moreover, multiple scales in the initial condition are apparent
at different times of the evolution. This is called scale space of the differential
equation.

(a) Initial condition U
0

(b) Solution U
n at time tn = 10−6 with

ǫ = 1
(c) Level lines of Un at time tn = 10−6

with ǫ = 1

Figure 2. Initial condition and solution of the nonlinear fourth
order total variation flow (1.1) for ǫ = 1 at time 10−6.

In all examples the computational domain Ω is the unit square with 100× 100
gridpoints. In Figures 2-4 the effect of the evolution (1.1) for a simple two-
dimensional density function is analysed. The initial condition U0 in Figure 2(a)
equals a Gaussian density U0

i,j = exp (((xi − 1/2)2 + (yj − 1/2)2)/σ2) with vari-

ance σ2 = 0.01. As expected from the structure of the self-similar solutions (2.2)
discussed in section 2, as time progresses the top of the Gaussian is flattened, the
amplitude decreases and its support becomes larger. The qualitative behaviour of
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the solution in our examples is very similar to the self-similar solution of (1.4) for
α = 1, cf. Figure 1(b). The solutions are computed for different choices of regular-
ising parameters ǫ in (3.4). It can be seen that the sharpness of the ridge between
flat and steep part of the density increases with smaller ǫ, cf. e.g., the solution Un

at time tn = 10−6 in Figure 2(b-c) and in Figure 3(a-b).
We have also monitored mass and positivity of the discrete solutions in all our

simulations. We find that the solutions remain positive throughout the evolution.
The initial mass is preserved over time up to a relative numerical roundoff error of
10−6 which is well below the discretisation error.

Motivated by its original application in smoothing of density images [8], in
Figure 5 the denoising and scale space properties of equation (1.1) are numerically
simulated for the given noisy image in Figure 5(a). Due to the nonlinear nature
of the equation the diffusion is anisotropic. More precisely, the diffusion coefficient
depends on the reciprocal of the size of the image gradient and as such diffuses more
in homogeneous areas of the image and less at image edges, cf. Figures 5(b-c). To
measure the quality of the denoised image we consider the signal-to-noise ratio

(SNR) computed as SNR = 20 log
[
∑

i,j U
2
i,j/

∑

i,j(Uorg − U)2i,j
]1/2

, where Uorg is

the original image without noise. Starting with the noisy image in Figure 5(a) with
SNR = 36.15 this value improves for the solution at tn = 10−7 to SNR= 37.18, cf.
Figure 5(b). For the next solution plotted at time tn = 10−6 in Figure 5(c) the
solution has already lost on its quality improvement with SNR=33.56. This is due
to the multiscale properties of the equation, i.e. as time evolves the small scales in
the image get more and more absorbed by the larger scales, cf. Figure 5(c-e). These
larger scales are the edges that outline the main structures in the image, e.g, the
black boundary of the box and the contour of the writing ‘2012’. As time evolves
further the structures are smoothed out even more (see Figure 5(f)) and eventually
the solution will converge to a constant steady state (average of all grayvalues in
U0).
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