On the stability of a compact finite difference
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Abstract In this short paper we are concerned with the von Neumaniiistamnaly-
sis of a compact high-order finite difference scheme forapptiricing in the Heston
stochastic volatility model. We first review results on threeonditional stability in
the case of vanishing correlation and then present someewmits on the behavior
of the amplification factor for non-zero correlation.

1 Introduction

The Heston model [8] is a stochastic volatility model forioptpricing where the
option priceV as function of price of the underlyir§y volatility o and timet solves

Vi + 3S20Vss+ pvoSVss + 3V20Vgo + 1SV + [K* (8" — 0) — A 0|Vg — 1V =0,

1)
for So >0, 0<t < T and subject to a suitable final condition, &S o,T) =
max(K — S 0), in case of a European put option with strike pri€eln (1), k*, v,
6*, andA denote the constant mean reversion speed, volatility aftiity, long-
run mean of volatility, and market price of volatility riskapmeter, respectively.
The ‘boundary’ conditions in the case of the put option resitbows

V(0,0,t)=Ke" ™Y T>t>0 0>0,
V(§o,t)—»0, T>t>0 0>0, asS— oo,
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V(S 0,t) -0, T>t>0,S>0,asc— 0andog — co.

For constantparameters, one can employ Fourier transform techniqueé®latain
a system of ordinary differential equations which can beresblanalytically [8].
In general, however, when the coefficients are not conségptation (1) has to be
solved numerically. In the mathematical literature, trememany papers on numer-
ical methods for option pricing with a single underlying. Mapproaches use stan-
dard, second order finite difference methods. Compact bigbr finite difference
schemes were proposed, e.g. in [6, 7, 12]. For option pricirntje Heston model
different second order finite difference methods for s@vihe American option
pricing problem are compared in [10]. In [9] different, lowder ADI (alternating
direction implicit) schemes are adapted to the Heston mimdilclude the mixed
spatial derivative term. Other approaches include finigenelnt-finite volume [16],
multigrid [2], sparse wavelet [11], and spectral methods.[1

In [3,4] we proposed a newigh-order compact finite difference schefaeop-
tion pricing in the Heston model. It can easily be adaptedherostochastic volatil-
ity models (e.g. [5]). In this short paper we focus on the varuiann stability
analysis of the new scheme. We first review stabilty reshlis we obtained in [3]
in the case of vanishing correlation, i@= 0. Then we present some new results
on the behavior of the amplification factor for non-zero etation.

2 High order compact scheme

Let us introduce the modified parametets- k* +A, 8 = k*0*/(k* + A), which
allow us to study the problem with one parameter less. Uriietransformation
of variablesx = In(S/K), y=o/v, T =T —t, u= exp(ri)V /K, (we immediately
drop the tilde in the following) and using the modified paréengk and8, we then
obtain from (1),

U — SVY(Uxx + Uyy) — PVYUy + (SVy—T) U — K e;vyuy =0, 2)

which has to be solved d& x R* with transformed initial and boundary conditions.
For the discretization, we replaéeby [-Ry, R;] andR* by [0, R,] with Ry, R, >
0. For simplicity, we consider a uniform grid with mesh widitin both thex- and
y-direction,Z = {x; € [-R¢,R1] : Xy =ih, i = —N,...,N} x {y; € [0,R] : yj = jh,
i =0,...,M} consisting of(2N + 1) x (M + 1) grid points, withR; = Nh, R, = Mh
and time stegk. Let u{fj denote the approximate solution of (2) (R,y;) at the
time t" = nk and letu" = (u?;). On the truncated numerical domain we impose
artificial boundary conditions. We difference at titpe= (1 — p)t" + ut"t, where
0 < u <1 Thisyields a class of integrators that include the forwamtbE(u = 0),
Crank-Nicolson ¢ = 1/2) and backward Euleg(= 1) schemes.
The fourth-order compact finite difference scheme deriveB] uses a nine-
point computational stencil involving the eight nearesighboring points of the
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reference grid pointi, j),

U-1j+1=Us Ujj+1=U2 U1 j+1=Us
U-1j=U3 Uj=Up Uy1j=Ur |.

U-1j-1=U7 Uj 1=Us Uy1j 1="Us

The resulting fully discrete difference scheme for n¢id¢) at the time leveh can
be written in the form

oAUt =3 g, 3)
where the coefficient§, ¢, are given by (a detailed derivation is presented in [3])

Bo =(((2y;” —8)V*+ ((—8k — 8r)y; — 8pr )V’ + (8K?y;* + 8r°)V?
— 16k20vy; + 8k202) uk + 16v3y)h? + (—16p2 4 40)y; 2V* Lk,
Bra =+ ((KOV —V* — ky;VP) uk — (yj +2p)V + 2°r)h® + (((—y;* + 2)v*
+ ((4r + 2K)y; + 4pr)V° — (2K 6 + 4r2)V2) uk + 2v%y; ) h?
+ (4% + (—8y; %k p — 8yjr)V3 + 8yjk Bpv?) ukh+ (8p? — 8)y; VA Lk,
Bo.a ==+ ((2k20V— 2k*VPyj — 2K uk — 2V2y K 4+ 2vk 8 — 2v°)h3 4 (24
+ 2KY;jV3 + (—4K2yj? + 2k )V + 8k 2 Bvyj — 4k%02) ik + 27y )h?
+((8y;%K +8yjpr)V® — vy, 2p — 8VPy K 0) ukh+ (8p% — 8)y; 2V ik,
Bs.7 =((V*p + (V2K + Kyjp +T)V2+ (8 4 2r)Ky;V2 — 2rk BV) uk
+V2pyj )+ (20 + 1)y V' + ((2+4p)Ky;® + (—4pr — 2r)yjV?
+(—26 — 46p)ky;V?) pkh+ (—2— 4p* — 6p)y; V' ik,
Bos =((—V*p + (y;’K — Kyjp — ' )V?+ (—6 — 2r)Ky;V* + 2rk V) uk
—Ppyj)h? £ ((20 = 1)y;V* + ((2— 4p)Kky;® + (2r — 4pr)y;V?
+ (48p — 20)ky;V?) ukh+ (—4p? + 6p — 2)y; 2V uk,
Qo =163y + (1— p)k(((8— 2y;°)V* + ((8K +8r)y; +8pr)v*
+ (—8r2 — 8Kk%y;?)V2 4 16k *Bvy; — 8k262)h? + (—40+ 16p%)y;2V*),
{13 =+ (2r — (yj +2p)V)V?h3 + 23y 0% + (1 — p)K(Z(vKY] + V2 — KO)V?h?
+ (V2yj2 — (4 + 2K)Vyj +4r? + 2k 0 — 2v% — 4pvr)vPh?
+ ((—4v+ 8k p)Vy;% + (—8K Bp + 8vr)VPyj )h+ (8v2 — 8V p?)VPy;?),
{oa =+ (2vk B — 2Pk — 2V*)h3 + 2%y h? + (1 — p)k(£2(VPk — K20V
+ K22y + (kP2 — (22 4 8K B)KVyj + 2k B(2k B —V2) — 2v*)h?
+ ((—8v%k + 4 p)y;2 + (8k OV — 8 pr )y )h+ (—8*p? + 8V )y;?),
{s7 =Vpyjh? + (1 — K((VPyj2K —V(VKB + 2rkvV+ KV2p)y;
—V(VPr —2rk 8 +V3p) )% £ (—v(2V3p +V? + 4k VPp + 22K )y 2
+V(2vK 8+ Avk Bp + 4P pr 4+ 2021 )yj ) h+ V(23 + 6v3p + 43 p?)y;?),
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log = — VpYyjh? + (1 — LK((—VPY;?K +V(VK B 4 2rkV -+ KV2P)Y;
FV(VPr —2rk 8 +V3p))h? + (V(—2v3p + V3 + 4k VPp — 22K )y 2
+V(2vk 8 — 4vk Bp + 4Ppr — 2%r)yj)h+v(2¥° — 6v°p + 4v3p?)y;?).

When multiple indexes are used with and F signs, the first and second index
corresponds to the upper and lower sign, respectively.drCitank-Nicolson case
u =1/2, the resulting scheme is of order two in time and of order fawspace.

3 Stability results

We study the von Neumann stability of the scheme (for frozesfficients). Note
that our numerical experiments that we reported in [3, 4]rditlreveal any stability
problems. To reduce the high number of parameters, we asaeirnénterest rate,
r =0, and choose the paramefer=1/2. We rewriteui’j jas

n _ ndlizi+ljz
ulj =gle i, (4)

wherel is the imaginary unitg" is the amplitude at time level, andz, = 2mh/A1
andz, = 2mnth/A; are phase angles with wavelengthg in the rang€d0, 2r1. The
scheme is stable if for al; » the amplification factoG = g™1/g" satisfies

IG?—1<0. (5)

An expression fofs can be found using (4) in (3). We recall the following theorem

Theorem 1 (cf. [3]).Forr = p =0and u = 1/2 (Crank-Nicolson), the scheme (3)
is unconditionally stable (von Neumann).

One key ingredient of the proof in [3] is to define new variallg, = cogz2/2),

S12 =siN(z12/2), W = —=2(vy— 08)s/v, V = 2vys /K, which allow us to express

G in terms ofh,k, k,V,W and trigonometric functions only. For non-zero correla-
tion the situation becomes more involved. Additional teappear in the expression
for the amplification factoG and we face an additional degree of freedom through
p. Since we have proven unconditional stability foe= O it seems reasonable to
assume condition (5) to hold at least for valuepalose to zero. In practical appli-
cations, however, correlation can be strongly negativer theoretical results can
be obtained, some of them are given in the following lemma.

Lemma 1.For anyp, r =0, u = 1/2 (Crank-Nicolson), if g=+1orc, = +1or
y = 0 then the stability conditiofb) is satisfied.

Proof. We can prove by direct computation

e if y=0,itholds|G|?~1=0, and

e if 2 =1 (thenV =0), it holds|G|? — 1= -2, and

e if 3 =1 (thenW = 0), it holds|G|? — 1= —64akkV s/ (fis1 + Bo),
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wherea = h?(c2 — 1) — 6¢;2 — 12, B1 = 32kkV(cZ — 1)h* — 192KV (c12 + 2)h?,
B2 = 16(c% — 1)h® + (k?k2V2(c12 — 1) — 64y * — 256(c1? + 1) )h* — 12k 2k2V2 ()2 +
2)h? + 144k?k?V2(c? — 1), s1 € [0,1], andV > 0. It is simple to prove thatr < 0,
B1 <0, B, <0 and concluded

Since at present a complete analysis for non-zero cowalatems out of reach,
we resort to performing numerical studies of the amplifmatactorG. To this end,
we fix some parameters to practical relevant values 0.1, k =2, 6 = 0.01 We
replace all sinus terms in (5) by equivalent cosinus expsassThen, condition (5)
depends op and five other parameters;, ¢z, v, h, k.

We reformulate condition (5) into a constrained optimizatiproblem with
constraints induced by typical parameter ranggsc; € [-1,1], y € [0,2], h €
[1076,1071] andk € [1012,1071] (no real restriction on the mesh widths). For dif-
ferent values op fixed in[—1,0], we search

ma)%l.Cz,y,h,k ‘G(p) ‘2 - 1 (6)

which has to be less or equal to zero. A line-search globairigation algorithm
based on the Powell's and Brent's methods [1, 14] is employkxte precisely, we

use the DirectSearch optimization package v.2 for Maplg4h8 its derivative-free
optimisation method CDOS (Conjugate Direction with Ortbigl Shift). Solving

(6) for 50 uniform values op € [—1,0], we find that the stability condition is always
satisfied. The maxima for eaghare always negative and very close to 0. This result
is in agreement with Lemma 1G|2 — 1 = 0 for y = 0). We conjecture that the
stability condition (5) is satisfied although hard to provelatically.

Moreover, these results give information on the locatiothefmaxima. We ob-
serve that extrema are often attainedyalose to 0 as already mentioned, and for
the extreme values af » = +1 which correspond to vanishing andW, respec-
tively, andh,k seem to be linked. By Lemma 1 the stability condition is $ietis
for such values which induce drastic simplificatiordnTo study the behavior &
according tgo away from these values, we solve (6) restricting the rangbeopa-
rameters to exclude those specific values (where stalslisatisfied). We consider
C12 € [~1+¢,1—¢ with e =105 he [10°6,1071] and fixk = h? as suggested
by the above results and the parabolic nature of the PDE. Wetspinterval fory
into [€,2/10] (to exclude 0 and observe significant maximum values)[ant0, 2]

(to excludey = 6/v which cancel®V). Figure 3 gives the maxima obtained for 50
uniform values op € [—1,0] and illustrates the influence pf The stability condi-
tion is more and more difficult to obtain @s\, —1 ory \, 0. The stability condition
is always satisfied. We refer to [3] for additional numeriegperiments where we
monitored the error of numerical solutions for vanishingl &r non-zero correla-
tion. We observed a similar behavior for both cases and didlogerve any stability
problems.
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Fig. 1 Numerical results for (6) fop € [—1,0] andy € [e,2/10] (left), y € [2/10, 2] (right).
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