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Abstract In this short paper we are concerned with the von Neumann stability analy-
sis of a compact high-order finite difference scheme for option pricing in the Heston
stochastic volatility model. We first review results on the unconditional stability in
the case of vanishing correlation and then present some new results on the behavior
of the amplification factor for non-zero correlation.

1 Introduction

The Heston model [8] is a stochastic volatility model for option pricing where the
option priceV as function of price of the underlyingS, volatility σ and timet solves

Vt +
1
2S2σVSS+ρvσSVSσ + 1

2v2σVσσ + rSVS+
[

κ∗(θ ∗−σ)−λσ
]

Vσ − rV = 0,
(1)

for S,σ > 0, 0≤ t < T and subject to a suitable final condition, e.g.V(S,σ ,T) =
max(K −S,0), in case of a European put option with strike priceK. In (1), κ∗, v,
θ ∗, andλ denote the constant mean reversion speed, volatility of volatility, long-
run mean of volatility, and market price of volatility risk parameter, respectively.
The ‘boundary’ conditions in the case of the put option read as follows

V(0,σ , t) = Ke−r(T−t), T > t ≥ 0, σ > 0,

V(S,σ , t)→ 0, T > t ≥ 0, σ > 0, asS→ ∞,
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Vσ (S,σ , t)→ 0, T > t ≥ 0, S> 0, asσ → 0 andσ → ∞.

For constantparameters, one can employ Fourier transform techniques and obtain
a system of ordinary differential equations which can be solved analytically [8].
In general, however, when the coefficients are not constant,equation (1) has to be
solved numerically. In the mathematical literature, thereare many papers on numer-
ical methods for option pricing with a single underlying. Most approaches use stan-
dard, second order finite difference methods. Compact high-order finite difference
schemes were proposed, e.g. in [6, 7, 12]. For option pricingin the Heston model
different second order finite difference methods for solving the American option
pricing problem are compared in [10]. In [9] different, low order ADI (alternating
direction implicit) schemes are adapted to the Heston modelto include the mixed
spatial derivative term. Other approaches include finite element-finite volume [16],
multigrid [2], sparse wavelet [11], and spectral methods [15].

In [3, 4] we proposed a newhigh-order compact finite difference schemefor op-
tion pricing in the Heston model. It can easily be adapted to other stochastic volatil-
ity models (e.g. [5]). In this short paper we focus on the von Neumann stability
analysis of the new scheme. We first review stabilty results that we obtained in [3]
in the case of vanishing correlation, i.e.ρ = 0. Then we present some new results
on the behavior of the amplification factor for non-zero correlation.

2 High order compact scheme

Let us introduce the modified parameters,κ = κ∗+λ , θ = κ∗θ ∗/(κ∗+λ ), which
allow us to study the problem with one parameter less. Under the transformation
of variablesx = ln(S/K), y = σ/v, t̃ = T − t, u = exp(rt̃)V/K, (we immediately
drop the tilde in the following) and using the modified parameters,κ andθ , we then
obtain from (1),

ut −
1
2vy(uxx+uyy)−ρvyuxy+

(

1
2vy− r

)

ux−κ θ−vy
v uy = 0, (2)

which has to be solved onR×R
+ with transformed initial and boundary conditions.

For the discretization, we replaceR by [−R1,R1] andR+ by [0,R2] with R1,R2 >
0. For simplicity, we consider a uniform grid with mesh widthh in both thex- and
y-direction,Z = {xi ∈ [−R1,R1] : xi = ih, i = −N, ...,N}×{y j ∈ [0,R2] : y j = jh,
i = 0, ...,M} consisting of(2N+1)× (M+1) grid points, withR1 = Nh, R2 = Mh
and time stepk. Let un

i, j denote the approximate solution of (2) in(xi ,y j) at the
time tn = nk and letun = (un

i, j). On the truncated numerical domain we impose

artificial boundary conditions. We difference at timetµ = (1−µ)tn+µtn+1, where
0≤ µ ≤ 1. This yields a class of integrators that include the forward Euler (µ = 0),
Crank-Nicolson (µ = 1/2) and backward Euler (µ = 1) schemes.

The fourth-order compact finite difference scheme derived in [3] uses a nine-
point computational stencil involving the eight nearest neighboring points of the
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reference grid point(i, j),





ui−1, j+1 = u6

ui−1, j = u3

ui−1, j−1 = u7

ui, j+1 = u2

ui, j = u0

ui, j−1 = u4

ui+1, j+1 = u5

ui+1, j = u1

ui+1, j−1 = u8



 .

The resulting fully discrete difference scheme for node(i, j) at the time leveln can
be written in the form

∑8
l=0 βl u

n+1
l = ∑8

l=0 ζl un
l , (3)

where the coefficientsβl , ζl are given by (a detailed derivation is presented in [3])

β0 =(((2y j
2−8)v4+((−8κ −8r)y j −8ρr)v3+(8κ2y j

2+8r2)v2

−16κ2θvyj +8κ2θ 2)µk+16v3y j)h
2+(−16ρ2+40)y j

2v4µk,

β1,3 =± ((κθv2−v4−κy jv
3)µk− (y j +2ρ)v3+2v2r)h3+(((−y j

2+2)v4

+((4r +2κ)y j +4ρr)v3− (2κθ +4r2)v2)µk+2v3y j)h
2

± (4v4y j
2+(−8y j

2κρ −8y j r)v
3+8y jκθρv2)µkh+(8ρ2−8)y j

2v4µk,

β2,4 =± ((2κ2θv−2κ2v2y j −2v3κ)µk−2v2y jκ +2vκθ −2v3)h3+((2v4

+2κy jv
3+(−4κ2y j

2+2κθ)v2+8κ2θvyj −4κ2θ 2)µk+2v3y j)h
2

± ((8y j
2κ +8y jρr)v3−4v4y j

2ρ −8v2y jκθ)µkh+(8ρ2−8)y j
2v4µk,

β5,7 =((v4ρ +(−y2κ +κy jρ + r)v3+(θ +2r)κy jv
2−2rκθv)µk

+v3ρy j)h
2± ((2ρ +1)y j

2v4+((2+4ρ)κy j
2+(−4ρr −2r)y j)v

3

+(−2θ −4θρ)κy jv
2)µkh+(−2−4ρ2−6ρ)y j

2v4µk,

β6,8 =((−v4ρ +(y j
2κ −κy jρ − r)v3+(−θ −2r)κy jv

2+2rκθv)µk

−v3ρy j)h
2± ((2ρ −1)y j

2v4+((2−4ρ)κy j
2+(2r −4ρr)y j)v

3

+(4θρ −2θ)κy jv
2)µkh+(−4ρ2+6ρ −2)y j

2v4µk,

ζ0 =16v3y jh
2+(1−µ)k(((8−2y j

2)v4+((8κ +8r)y j +8ρr)v3

+(−8r2−8κ2y j
2)v2+16κ2θvyj −8κ2θ 2)h2+(−40+16ρ2)y j

2v4),

ζ1,3 =± (2r − (y j +2ρ)v)v2h3+2v3y jh
2+(1−µ)k(±(vκy j +v2−κθ)v2h3

+(v2y j
2− (4r +2κ)vyj +4r2+2κθ −2v2−4ρvr)v2h2

± ((−4v+8κρ)v3y j
2+(−8κθρ +8vr)v2y j)h+(8v2−8v2ρ2)v2y j

2),

ζ2,4 =± (2vκθ −2v2y jκ −2v3)h3+2v3y jh
2+(1−µ)k(±2(v3κ −κ2θv

+κ2v2y j)h
3+(4κ2v2y j

2− (2v2+8κθ)κvyj +2κθ(2κθ −v2)−2v4)h2

± ((−8v3κ +4v4ρ)y j
2+(8κθv2−8v3ρr)y j)h+(−8v4ρ2+8v4)y j

2),

ζ5,7 =v3ρy jh
2+(1−µ)k((v3y j

2κ −v(vκθ +2rκv+κv2ρ)y j

−v(v2r −2rκθ +v3ρ))h2± (−v(2v3ρ +v3+4κv2ρ +2v2κ)y j
2

+v(2vκθ +4vκθρ +4v2ρr +2v2r)y j)h+v(2v3+6v3ρ +4v3ρ2)y j
2),
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ζ6,8 =−v3ρy jh
2+(1−µ)k((−v3y j

2κ +v(vκθ +2rκv+κv2ρ)y j

+v(v2r −2rκθ +v3ρ))h2± (v(−2v3ρ +v3+4κv2ρ −2v2κ)y j
2

+v(2vκθ −4vκθρ +4v2ρr −2v2r)y j)h+v(2v3−6v3ρ +4v3ρ2)y j
2).

When multiple indexes are used with± and∓ signs, the first and second index
corresponds to the upper and lower sign, respectively. In the Crank-Nicolson case
µ = 1/2, the resulting scheme is of order two in time and of order four in space.

3 Stability results

We study the von Neumann stability of the scheme (for frozen coefficients). Note
that our numerical experiments that we reported in [3,4] didnot reveal any stability
problems. To reduce the high number of parameters, we assumezero interest rate,
r = 0, and choose the parameterµ = 1/2. We rewriteun

i, j as

un
i, j = gneIiz1+I jz2, (4)

whereI is the imaginary unit,gn is the amplitude at time leveln, andz1 = 2πh/λ1

andz2 = 2πh/λ2 are phase angles with wavelengthsλ1,2 in the range[0,2π[. The
scheme is stable if for allz1,2 the amplification factorG= gn+1/gn satisfies

|G|2−1≤ 0. (5)

An expression forG can be found using (4) in (3). We recall the following theorem.

Theorem 1 (cf. [3]).For r = ρ = 0 andµ = 1/2 (Crank-Nicolson), the scheme (3)
is unconditionally stable (von Neumann).

One key ingredient of the proof in [3] is to define new variables c1,2 = cos(z1,2/2),
s1,2 = sin(z1,2/2), W = −2(vy−θ)s2/v, V = 2vys1/κ , which allow us to express
G in terms ofh,k,κ ,V,W and trigonometric functions only. For non-zero correla-
tion the situation becomes more involved. Additional termsappear in the expression
for the amplification factorG and we face an additional degree of freedom through
ρ . Since we have proven unconditional stability forρ = 0 it seems reasonable to
assume condition (5) to hold at least for values ofρ close to zero. In practical appli-
cations, however, correlation can be strongly negative. Few theoretical results can
be obtained, some of them are given in the following lemma.

Lemma 1. For anyρ , r = 0, µ = 1/2 (Crank-Nicolson), if c1 = ±1 or c2 = ±1 or
y= 0 then the stability condition(5) is satisfied.

Proof. We can prove by direct computation
• if y= 0, it holds|G|2−1= 0, and
• if c2

1 = 1 (thenV = 0), it holds|G|2−1=−2, and
• if c2

2 = 1 (thenW = 0), it holds|G|2−1=−64ακkVh2s1/(β1s1+β2),
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whereα = h2(c2
1 − 1)− 6c1

2 − 12, β1 = 32κkV(c2
1 − 1)h4 − 192κkV(c1

2 + 2)h2,
β2 = 16(c2

1−1)h6+(κ2k2V2(c1
2−1)−64c1

4−256(c1
2+1))h4−12κ2k2V2(c1

2+
2)h2+144κ2k2V2(c2

1−1), s1 ∈ [0,1], andV ≥ 0. It is simple to prove thatα ≤ 0,
β1 ≤ 0, β2 ≤ 0 and conclude.⊓⊔

Since at present a complete analysis for non-zero correlation seems out of reach,
we resort to performing numerical studies of the amplification factorG. To this end,
we fix some parameters to practical relevant values,v= 0.1, κ = 2, θ = 0.01. We
replace all sinus terms in (5) by equivalent cosinus expressions. Then, condition (5)
depends onρ and five other parameters:c1, c2, y, h, k.

We reformulate condition (5) into a constrained optimization problem with
constraints induced by typical parameter ranges:c1, c2 ∈ [−1,1], y ∈ [0,2], h ∈
[10−6,10−1] andk∈ [10−12,10−1] (no real restriction on the mesh widths). For dif-
ferent values ofρ fixed in [−1,0], we search

maxc1,c2,y,h,k |G(ρ)|2−1 (6)

which has to be less or equal to zero. A line-search global-optimization algorithm
based on the Powell’s and Brent’s methods [1,14] is employed. More precisely, we
use the DirectSearch optimization package v.2 for Maple [13] and its derivative-free
optimisation method CDOS (Conjugate Direction with Orthogonal Shift). Solving
(6) for 50 uniform values ofρ ∈ [−1,0], we find that the stability condition is always
satisfied. The maxima for eachρ are always negative and very close to 0. This result
is in agreement with Lemma 1 (|G|2 − 1 = 0 for y = 0). We conjecture that the
stability condition (5) is satisfied although hard to prove analytically.

Moreover, these results give information on the location ofthe maxima. We ob-
serve that extrema are often attained fory close to 0 as already mentioned, and for
the extreme values ofc1,2 = ±1 which correspond to vanishingV andW, respec-
tively, andh,k seem to be linked. By Lemma 1 the stability condition is satisfied
for such values which induce drastic simplification inG. To study the behavior ofG
according toρ away from these values, we solve (6) restricting the range ofthe pa-
rameters to exclude those specific values (where stability is satisfied). We consider
c1,2 ∈ [−1+ ε ,1− ε] with ε = 10−6, h∈ [10−6,10−1] and fixk = h2 as suggested
by the above results and the parabolic nature of the PDE. We split the interval fory
into [ε ,2/10] (to exclude 0 and observe significant maximum values) and[2/10,2]
(to excludey= θ/v which cancelsW). Figure 3 gives the maxima obtained for 50
uniform values ofρ ∈ [−1,0] and illustrates the influence ofρ . The stability condi-
tion is more and more difficult to obtain asρ ց−1 oryց 0. The stability condition
is always satisfied. We refer to [3] for additional numericalexperiments where we
monitored the error of numerical solutions for vanishing and for non-zero correla-
tion. We observed a similar behavior for both cases and did not observe any stability
problems.
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the Austrian-Croatian Project HR 01/2010 of the Austrian Exchange Service (̈OAD). The authors
are grateful to the anonymous referee for his constructive remarks and suggestions.



6 Bertram D̈uring and Michel Fourníe

Fig. 1 Numerical results for (6) forρ ∈ [−1,0] andy∈ [ε,2/10] (left), y∈ [2/10,2] (right).
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